Research team identifies link between inflammation and type 2 diabetes

February 5, 2015

A Yale-led research team has identified the molecular mechanism by which insulin normally inhibits production of glucose by the liver and why this process stops working in patients with type 2 diabetes, leading to hyperglycemia.

The findings are published Feb. 5 in the journal Cell.

"In the study, we set out to examine how insulin normally works to turn off production of glucose by the and why this process goes awry in patients with type 2 diabetes," said Gerald I. Shulman, the George R. Cowgill professor of physiological chemistry, professor of medicine and cellular & molecular physiology at Yale School of Medicine, and an investigator with the Howard Hughes Medical Institute.

Experts have long debated how insulin suppresses glucose production by the liver. Many have asserted that insulin's suppression of glucose production was due to the direct action of insulin on the liver. But the Yale-led team uncovered a different process that challenges current theories and may lead to new targets for treatment.

Yale researchers hypothesized that insulin suppressed glucose production by the liver by inhibiting the breakdown of fat, which would result in a reduction in hepatic acetyl CoA, a key molecule that they showed was critical in regulating the conversion of amino acids and lactate to glucose. They also found that reversal of this process, due to inflammation in adipose (fatty) tissue, led to increased hepatic production and hyperglycemia in high-fat-fed rodents and obese, insulin-resistant adolescents. "These studies identify hepatic acetyl CoA as a key mediator of insulin action on the liver and link it to inflammation-induced hepatic insulin resistance and type 2 diabetes," Shulman explained.

This new insight into insulin resistance paves the way for exploring new treatments. "None of the drugs we currently use to treat type 2 target the root cause," said Shulman. "By understanding the molecular basis for hepatic resistance we now can design better and more effective drugs for its treatment."

Explore further: Diabetes debate: Triglycerides form in liver despite insulin resistance

More information: Cell DOI: 10.1016/j.cell.2015.01.012

Related Stories

Diabetes debate: Triglycerides form in liver despite insulin resistance

January 5, 2015
Solving one of the great mysteries of type 2 diabetes, a team of Yale researchers found that triglycerides, a type of fat in the blood and liver, are produced in the liver independent of insulin action in the liver.

Protein linked to aging identified as new target for controlling diabetes

November 5, 2014
Indiana University School of Medicine researchers have identified a small protein with a big role in lowering plasma glucose and increasing insulin sensitivity. Their research appeared online today in Diabetes, the journal ...

How does DPP-4 inhibition affect liver function?

January 27, 2015
(HealthDay)—Dipeptidyl peptidase-4 (DPP-4) inhibition may attenuate hepatic steatosis and insulin resistance induced by the Western diet (WD) through hepatic lipid remodeling and modulation of hepatic mitochondrial function, ...

How leptin, the 'satiety hormone,' reverses diabetes

June 16, 2014
(Medical Xpress)—Treatment with leptin, the hormone associated with fullness or satiety, reverses hyperglycemia in animals models of poorly controlled type 1 (T1D) and type 2 (T2D) diabetes by suppressing the neuroendocrine ...

Reversing key precursors to diabetes

November 6, 2013
Yale researchers have found a way to disrupt the biological underpinnings of disorders that predispose a person to type 2 diabetes (T2D), raising the possibility of developing therapies to reverse these conditions. The study ...

Estrogen may improve pathway-selective insulin resistance

February 14, 2013
(HealthDay)—Estrogen treatment at the time of surgical menopause may reverse aspects of pathway-selective insulin resistance in the liver associated with a high-fat diet (HFD) in mice by promoting insulin action on glucose ...

Recommended for you

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

In lab research, scientists slow progression of a fatal form of muscular dystrophy

December 8, 2017
In a paper published in the Nature journal Scientific Reports, Saint Louis University (SLU) researchers report that a new drug reduces fibrosis (scarring) and prevents loss of muscle function in an animal model of Duchenne ...

Double-blind study shows HIV vaccine not effective in viral suppression

December 7, 2017
(Medical Xpress)—A large team of researchers from the U.S. and Canada has conducted a randomized double-blind study of the effectiveness of an HIV vaccine and has found it to be ineffective in suppressing the virus. In ...

Time matters: Does our biological clock keep cancer at bay?

December 7, 2017
Our body has an internal biological or "circadian" clock, which cycles daily and is synchronized with solar time. New research done in mice suggests that it can help suppress cancer. The study, publishing 7 December in the ...

Novel harvesting method rapidly produces superior stem cells for transplantation

December 7, 2017
A new method of harvesting stem cells for bone marrow transplantation - developed by a team of investigators from the Massachusetts General Hospital (MGH) Cancer Center and the Harvard Stem Cell Institute - appears to accomplish ...

Inhibiting TOR boosts regenerative potential of adult tissues

December 7, 2017
Adult stem cells replenish dying cells and regenerate damaged tissues throughout our lifetime. We lose many of those stem cells, along with their regenerative capacity, as we age. Working in flies and mice, researchers at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.