Brain processes ongoing pain more emotionally

March 11, 2015
The picture shows the EEG results during a short (left) and a long-lasting pain stimulus (right). The brain areas with the strongest activity are depicted in red. Short pain stimuli are processed in sensory brain areas, whereas ongoing pain is processed in frontal brain areas which are related to emotional processes. Credit: E. Schulz et al., 2015, Prefrontal gamma oscillations encode tonic pain in humans, Cerebral Cortex, doi: 10.1093/cercor/bhv043, modified

A momentary lapse of concentration is all it takes for a finger to become trapped or sprain an ankle - and it hurts. Pain is the body's protective mechanism and a complex neurological phenomenon. Moreover, ongoing pain in the sense of chronic pain can be a disease. Scientists from Technische Universität München (TUM) have now demonstrated that already during a few minutes of ongoing pain, the underlying brain activity changes by shifting from sensory to emotional processes.

In their experiments, Prof. Markus Ploner, Heisenberg Professor for Human Pain Research at the TUM School of Medicine, and his team investigated perception: How does the duration of pain or the action of a placebo affect activities in the brain? For their measurements they used electroencephalograms (EEGs). The test subject wore a cap with 64 electrodes that can measure nerve cell activity in the brain throughout the experiment. This method makes it possible to chronologically pinpoint which signals nerve cells use to respond to a pain stimulus.

Pain influences emotion

The scientists used the following arrangement for their experiments: Over a period of ten minutes, 41 participants in the study were given painful heat stimuli to the hand which varied in intensity throughout the duration of the experiment. The participants were asked to continuously assess the level of their pain on a scale of one to a hundred with the other hand using a slider.

"We were absolutely amazed by the results: After just a few minutes, the subjective perception of pain changed - for example, the subjects felt changes in pain when the objective stimulus remained unchanged. The sensation of pain became detached from the objective stimulus after just a few minutes," says Markus Ploner, describing the results.

Previous studies showed that brief pain stimuli are predominantly processed by sensory areas of the brain that process the signals from the sensory organs such as the skin. However, in their experiment with longer-lasting ongoing pain, the EEGs gave the scientists a different picture: in this case, emotional areas of the brain became active.

"If pain persists over a prolonged period of time, the associated brain activity shows that it changes from a pure perception process to a more emotional process. This realization is extremely interesting for the diagnosis and treatment of where pain persists for months and years," explains Markus Ploner, who is also senior physician in the Department of Neurology at the TUM Klinikum rechts der Isar.

Placebos change the perception of pain

A second experiment showed that it is not just the duration, but also the anticipation of a pain stimulus that affects perception. Twenty test subjects were initially given different intensities of painful laser pulses on two areas of the back of the hand. The participants then rated verbally how strong they perceived the pain stimuli. As the experiments progressed, the subjects were once again given the same stimuli, the difference this time being that two creams had previously been applied to both areas. Although neither cream contained an active substance, the subjects were told that one of the creams had a pain-relieving effect.

The result according to Markus Ploner: "The subjects assessed the pain on the skin area with the allegedly pain-relieving cream as significantly lower than on the other area of skin." The scientists were further able to demonstrate how the brain implements this placebo effect: although the subjects were given the same pain stimuli, the nerve cells in the second run triggered a different pattern of .

"Our results show how differently our brain processes the same pain stimuli. Systematically mapping and better understanding this complex neurological phenomenon of 'pain' in the is a big challenge, but is absolutely essential for improving therapeutic options for pain patients," in Ploner's opinion.

Explore further: 'Ouch zone' in the brain identified

More information: E. Schulz, E. S. May, M. Postorino, L. Tiemann, M. M. Nickel, V. Witkovsky, P. Schmidt, J. Gross, M. Ploner, Prefrontal gamma oscillations encode tonic pain in humans, Cerebral Cortex, February 2015. DOI: 10.1093/cercor/bhv043

L. Tiemann, E. S. May, M. Postorino, E. Schulz, M. M. Nickel, U. Bingel, M. Ploner, Differential neurophysiological correlates of bottom-up and top-down modulations of pain, Pain, 2015, Feb;156(2):289-96. DOI: 10.1097/01.j.pain.0000460309.94442.44

Related Stories

'Ouch zone' in the brain identified

March 9, 2015
Activity in a brain area known as the dorsal posterior insula is directly related to the intensity of pain, a brain imaging study of 17 people has found.

Fibromyalgia and the role of brain connectivity in pain inhibition

October 1, 2014
The cause of fibromyalgia, a chronic pain syndrome is not known. However, the results of a new study that compares brain activity in individuals with and without fibromyalgia indicate that decreased connectivity between pain-related ...

Various strategies used by patients with HIV, chronic pain

February 16, 2015
(HealthDay)—For individuals with HIV and chronic pain, various pain self-management strategies are employed, including physical activity, cognitive and spiritual strategies, and substance use, according to a study published ...

Scientists chart spinal circuitry responsible for chronic pain

December 5, 2014
Pain typically has a clear cause–but not always. When a person touches something hot or bumps into a sharp object, it's no surprise that it hurts. But for people with certain chronic pain disorders, including fibromyalgia ...

Pain from rejection and physical pain may not be so similar after all

November 18, 2014
Over the last decade, neuroscientists have largely come to believe that physical pain and social pain are processed by the brain in the same way. But a new study led by the University of Colorado shows that the two kinds ...

Experience of pain relies on multiple brain pathways, not just one

January 12, 2015
People's mindsets can affect their experience of pain. For example, a soldier in battle or an athlete in competition may report that an injury did not feel especially painful in the heat of the moment. But until now it has ...

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.