Natural reparative capacity of teeth elucidated

April 22, 2015
The dental pulp is shown in yellow. Credit: ©Inserm/ Chappard, Daniel

Researchers at Inserm and Paris Descartes University have just taken an important step in research on stem cells and dental repair. They have managed to isolate dental stem cell lines and to describe the natural mechanism by which they repair lesions in the teeth. This fundamental discovery will make it possible to initiate unprecedented therapeutic strategies to mobilise the resident dental stem cells and magnify their natural capacity for repair.

These results are published in the journal Stem Cells.

The tooth is a mineralised organ, implanted in the mouth by a root. The "living" part of the tooth or dental cavity is the dental pulp (in yellow in the photograph shown opposite) composed of vessels and nerves. Around it is a hard substance, the dentine or ivory, which is in turn covered by an even harder tissue, the enamel. When a dental lesion appears, the dormant stem cells in the pulp awaken and try to repair the tooth by an unknown process.In this study, the researchers from Inserm and Paris Descartes University at Unit 1124, "Toxicology, Pharmacology and Cellular Signaling," have succeeded in extracting and isolating tooth stem cells by working on the pulp from the mouse molar.

The researchers were thus able to analyse the cells in detail, and identify 5 specific receptors for dopamine and serotonin on their surface, two neurotransmitters that are essential to the body.

The presence of these receptors on the surface of these stem cells indicated that they had the ability to respond to the presence of dopamine and serotonin in the event of a lesion. The researchers naturally wondered what cells might be the source of these neurotransmitters, a warning signal. It turns out that the , activated by the dental lesion, are responsible for releasing a large quantity of serotonin and dopamine. Once released, these neurotransmitters then recruit the stem cells to repair the tooth by binding to their receptors. The research team was able to confirm this result by observing that dental repair was absent in rats with modified platelets that do not produce serotonin or dopamine, i.e. in the absence of the signal.

In response to a lesion, the pulpal stem cells respond to serotonin and dopamine released by the blood platelets to ensure repair of the dentine. This discovery provides the fundamental basis for developing therapeutic strategies to mobilize the resident pulpal stem cells in order to magnify the natural reparative capacity of the teeth. Credit: © Inserm / Odile Kellermann, Anne Baudry

"In , it is unusual to be simultaneously able to isolate , identify the markers that allow them to be recognised (here the 5 receptors), discover the signal that recruits them (serotonin and dopamine), and discover the source of that signal (blood platelets). In this work, we have been able, unexpectedly, to explore the entire mechanism," explains Odile Kellermann, leader of the team from Inserm and Paris Descartes University, and the main author of this work.

To take things a stage further, the researchers tried to characterise the different receptors they found. One of the 5 receptors does not seem to affect the repair process. On the other hand, the other 4 turn out to be strongly involved in the repair process. In vivo blocking of just one of them is enough to prevent dental repair.

"Currently, dentists use pulp capping materials (calcium hydroxide) and tricalcium phosphate-based biomaterials to the tooth and fill lesions. Our results lead us to imagine unprecedented therapeutic strategies aimed at mobilising the resident pulpal stem cells in order to magnify the natural reparative capacity of teeth without use of replacement materials," concludes Odile Kellermann.

The foundations have been laid for extending this research done in rodents to of the human tooth in order to initiate new strategies for repairing teeth.

Explore further: Stem cells from nerves form teeth

Related Stories

Stem cells from nerves form teeth

July 29, 2014
Researchers at Karolinska Institutet in Sweden have discovered that stem cells inside the soft tissues of the tooth come from an unexpected source, namely nerves. These findings are now being published in the journal Nature ...

Wisdom teeth stem cells can transform into cells that could treat corneal scarring

February 23, 2015
Stem cells from the dental pulp of wisdom teeth can be coaxed to turn into cells of the eye's cornea and could one day be used to repair corneal scarring due to infection or injury, according to researchers at the University ...

Bio-hybrid dental implant that restores the physiological tooth functions

December 10, 2014
Our bodies function thanks to the smooth integration of different organs within the surrounding tissues. One challenge of creating artificial organs is to mimic the comprehensive organ function. Bio-hybrid implants are the ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.