Stem-cell-based therapy promising for treatment of breast cancer metastases in the brain

April 24, 2015
Stem-cell-based therapy promising for treatment of breast cancer metastases in the brain
Tagged therapeutic stem cells (green) are targeting breast cancer metastases (red) in the brain of a mouse model. Credit: Khalid Shah, MS, PhD, Massachusetts General Hospital

Investigators from Massachusetts General Hospital (MGH) and the Harvard Stem Cell Institute have developed an imageable mouse model of brain-metastatic breast cancer and shown the potential of a stem-cell-based therapy to eliminate metastatic cells from the brain and prolong survival. The study published online in the journal Brain also describes a strategy of preventing the potential negative consequences of stem cell therapy.

"Metastatic brain tumors - often from lung, breast or skin cancers - are the most commonly observed tumors within the brain and account for about 30 percent of metastases," says Khalid Shah, MS, PhD, director of the Molecular Neurotherapy and Imaging Laboratory in the MGH Departments of Radiology and Neurology, who led the study. "Our results are the first to provide insight into ways of targeting with stem-cell-directed molecules that specifically induce the death of tumor cells and then eliminating the therapeutic ."

In their search for novel, tumor-specific therapies that could target multiple brain metastases without damaging adjacent tissues, the research team first developed a that more closely mimics what is seen in patients. They found that injecting into the carotid artery that express markers allowing them to enter the brain - cells labelled with bioluminescent and fluorescent markers to enable tracking by imaging technologies - resulted in the formation of many metastatic tumors throughout the brain, mimicking what is seen in advanced patients. Current therapeutic options for such patients are limited, particularly when there are many metastases.

To devise a potential new therapy, the investigators engineered a population of to express a potent version of a gene called TRAIL, which codes for a molecule that activates cell-death-inducing receptors found only on the surface of cancer cells. Previous research by Shah and his colleagues had shown that two types of stem cells are naturally attracted toward tumors in the brain. After first verifying in their model that stem cells injected to the brain would travel to multiple metastatic sites and not to tumor-free areas, the team implanted TRAIL-expressing stem cells into the brains of metastasis-bearing mice, which reduced the growth of tumors. Injecting the TRAIL-expressing stem cells into the carotid artery, a likely strategy for clinical application, led to significantly slower tumor growth and increased survival, compared with animals receiving unaltered stem cells or control injections.

The safe use of a stem-cell-based therapy against brain metastasis would require preventing the engineered cells from persisting within the brain, where they could affect normal tissue and possibly give rise to new tumors. To facilitate removal of the therapeutic stem cells from the brain at the conclusion of therapy, the researchers created cells that, in addition to TRAIL, express a viral gene called HSV-TK, which renders them susceptible to the effects of the antiviral drug ganciclovir. Several tests in cultured cells indicated that ganciclovir would cause the death of HSV-TK-expressing stem cells, and testing in the mouse model confirmed that administration of the drug after successful treatment of brain metastases successfully eliminated therapeutic stem cells that also expressed HSV-TK.

Shah and his team are currently developing similar animal models of brain metastasis from lung cancers and from melanoma. They also are working to improve understanding of the therapeutic efficacy of simultaneously targeting multiple tumor-specific molecules on the surface of within the brain and anticipate that their findings will make a major contribution towards developing novel targeted therapies for metastatic tumors in the brain.

Explore further: Scientists engineer toxin-secreting stem cells to treat brain tumors

Related Stories

Scientists engineer toxin-secreting stem cells to treat brain tumors

October 24, 2014
Harvard Stem Cell Institute scientists at Massachusetts General Hospital have devised a new way to use stem cells in the fight against brain cancer. A team led by neuroscientist Khalid Shah, MS, PhD, who recently demonstrated ...

Researchers identify protein pathway involved in brain tumor stem cell growth

February 26, 2015
Glioblastomas are a highly aggressive type of brain tumor, with few effective treatment options. Moffitt Cancer Center researchers are one step closer to understanding glioblastoma development following the identification ...

Team discovers novel mechanism controlling lung cancer stem cell growth

April 7, 2015
Lung cancer is the second most common type of cancer and the number one cause of cancer-related mortality. It is estimated that more than 158,000 people will die from lung cancer in the United States this year. Many scientists ...

MicroRNA molecule may serve as biomarker, target for brain metastases in breast cancer patients

February 5, 2013
Researchers have identified two molecules that could potentially serve as biomarkers in predicting brain metastases in patients with breast cancer, according to data published in Cancer Research, a publication of the American ...

Stem cells lurking in tumors can resist treatment

March 12, 2015
Scientists are eager to make use of stem cells' extraordinary power to transform into nearly any kind of cell, but that ability also is cause for concern in cancer treatment. Malignant tumors contain stem cells, prompting ...

Herpes-loaded stem cells used to kill brain tumors

May 16, 2014
(Medical Xpress)—Harvard Stem Cell Institute (HSCI) scientists at Massachusetts General Hospital have a potential solution for how to more effectively kill tumor cells using cancer-killing viruses. The investigators report ...

Recommended for you

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.