Researchers discover how the brain balances hearing between our ears

brain
Credit: Rice University

UNSW researchers have answered the longstanding question of how the brain balances hearing between our ears, which is essential for localising sound, hearing in noisy conditions and for protection from noise damage.

The landmark animal study also provides new insight into and is likely to improve cochlear implants and aids.

The findings of the NHMRC-funded research are published today in the prestigious journal Nature Communications.

UNSW Professor Gary Housley, senior author of the research paper, said his team sought to understand the biological process behind the 'olivocochlear' hearing control reflex.

"The balance of hearing between the ears and how we discriminate between sounds versus noise is dependent upon this neural reflex that links the cochlea of each ear via the brain's auditory control centre," Professor Housley said.

"Until now we haven't fully understood what drives the olivocochlear reflex."

"Our hearing is so sensitive that we can hear a pin drop and that's because of the 'cochlear amplifier' in our inner ear. This stems from outer in the cochlea which amplify vibrations."

"When sound intensity increases, the olivocochlear reflex turns down the 'cochlear amplifier' to dynamically balance the input of each ear for optimal hearing, sound localisation and to protect hearing."

The study found that the cochlear's outer hair cells, which amplify sound vibrations, also provide the sensory signal to the brain for dynamic feedback control of this sound amplification, via a small group of auditory nerve fibres of previously unknown function.

In mice lacking the sensory fibre connection to the cochlear outer hair cells, loud sound presented to one ear had no effect on hearing sensitivity in the other ear. In normal control mice this produced an almost instant suppression of hearing.

Similarly, the olivocochlear reflex normally causes a rapid reduction in hearing in the ear receiving an increase in sound. This hearing adaptation was also absent in the mice lacking the sensory fibre connection.

The researchers speculate that some of the hearing loss that humans experience as they age may be related to the gradual breakdown of this sensory fibre connection to the .

"A major limitation of and cochlear implants is their inability to work in tandem and support good hearing in noisy conditions," Professor Housley said

"The ultimate goal is for in both ears to communicate with each other so that the brain can receive the most accurate soundscape possible. This research will help us move closer to that goal."


Explore further

Scientists discover novel pain sensors in inner ear that warn of dangerously loud noise

More information: Nature Communications, DOI: 10.1038/ncomms8115
Journal information: Nature Communications

Citation: Researchers discover how the brain balances hearing between our ears (2015, May 12) retrieved 20 October 2019 from https://medicalxpress.com/news/2015-05-brain-ears.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
248 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more