Study identifies 'major player' in skin cancer genes

July 27, 2015
Melanoma in skin biopsy with H&E stain — this case may represent superficial spreading melanoma. Credit: Wikipedia/CC BY-SA 3.0

A multidisciplinary team at Yale, led by Yale Cancer Center members, has defined a subgroup of genetic mutations that are present in a significant number of melanoma skin cancer cases. Their findings shed light on an important mutation in this deadly disease, and may lead to more targeted anti-cancer therapies.

The study was published July 27 in Nature Genetics.

The role of in numerous genes and genomic changes in the development of —a with over 70,000 new cases reported in the United States each year—is well established and continues to be the focus of intense research. Yet in approximately 30% of melanoma cases the genetic abnormalities are unclear. To deepen understanding of melanoma mutations, the Yale team conducted a comprehensive analysis using whole-exome sequencing of more than 200 melanoma samples from patients with the disease.

The multidisciplinary team—drawing on their expertise in genetics, cancer, computational biology, pharmacology, and other disciplines—also tested the response of tumor cells with specific mutations to anti-cancer drugs.

The researchers confirmed that a gene known as NF1 is a "major player" in the development of skin cancer. "The key finding is that roughly 45% of melanomas that do not harbor the known BRAF or NRAS mutations display loss of NF1 function, which leads to activation of the same cancer-causing pathway," said Michael Krauthammer, M.D., associate professor of pathology and the study's corresponding author.

Additionally, researchers observed that melanoma patients with the NF1 mutation were older and had a greater number of mutations in the tumors. These include mutations in the same pathway, collectively known as RASopathy genes.

Yet mutations in NF1 are not sufficient to cause skin cancer, said Ruth Halaban, senior research scientist in dermatology, a member of Yale Cancer Center, and lead author of the study. "Loss of NF1 requires more accompanying changes to make a tumor," she explained. "Our study identified changes in about 100 genes that are present only in the malignant cells and are likely to be causative. This panel of genes can now be used in precision medicine to diagnose malignant lesions and can be applied to personalized cancer treatment."

By testing the response of the melanoma samples to two cancer drugs, the researchers also determined that, in addition to loss of NF1, multiple factors need to be tested to predict the response to the drugs. "It opens the door to more research," said Halaban, who is also principal investigator at Yale SPORE in Skin Cancer.

Explore further: New melanoma driver genes found in largest DNA sequencing study to date

More information: Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas, Nature Genetics, DOI: 10.1038/ng.3361

Related Stories

New melanoma driver genes found in largest DNA sequencing study to date

July 29, 2012
(Medical Xpress) -- Yale Cancer Center geneticists, biochemists, and structural biologists have painted the most comprehensive picture yet of the molecular landscape of melanoma, a highly aggressive and often deadly skin ...

Finding may aid diagnosis of learning disabilities linked to brain tumor syndrome​​

July 22, 2015
New insight into one of the most common inherited causes of brain tumors may help physicians diagnose and treat the learning disabilities that often accompany the condition.

Deadly and distinctive—cancer caused by gene deletions

July 21, 2015
A deadly form of T cell lymphoma is caused by an unusually large number gene deletions, making it distinct among cancers, a new Yale School of Medicine study shows.

A tiny RNA with a big role in melanoma

February 18, 2014
A Yale-led study has identified a key mechanism in the regulation of gene expression that promotes the proliferation of melanoma cells. The finding opens a possible avenue for development of treatments that target this mechanism. ...

Researchers discover mechanism leading to BRAF inhibitor resistance in melanoma

June 19, 2015
The development of targeted therapies has significantly improved the survival of melanoma patients over the last decade; however, patients often relapse because many therapies do not kill all of the tumor cells, and the remaining ...

Yale launches national study of personalized medicine for metastatic melanoma

April 15, 2015
Yale University has launched a multicenter clinical trial, sponsored by Stand Up to Cancer and Melanoma Research Alliance, that will apply the latest in personalized medicine technology to treat metastatic melanoma. The trial, ...

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.