Study identifies 'major player' in skin cancer genes

July 27, 2015
Melanoma in skin biopsy with H&E stain — this case may represent superficial spreading melanoma. Credit: Wikipedia/CC BY-SA 3.0

A multidisciplinary team at Yale, led by Yale Cancer Center members, has defined a subgroup of genetic mutations that are present in a significant number of melanoma skin cancer cases. Their findings shed light on an important mutation in this deadly disease, and may lead to more targeted anti-cancer therapies.

The study was published July 27 in Nature Genetics.

The role of in numerous genes and genomic changes in the development of —a with over 70,000 new cases reported in the United States each year—is well established and continues to be the focus of intense research. Yet in approximately 30% of melanoma cases the genetic abnormalities are unclear. To deepen understanding of melanoma mutations, the Yale team conducted a comprehensive analysis using whole-exome sequencing of more than 200 melanoma samples from patients with the disease.

The multidisciplinary team—drawing on their expertise in genetics, cancer, computational biology, pharmacology, and other disciplines—also tested the response of tumor cells with specific mutations to anti-cancer drugs.

The researchers confirmed that a gene known as NF1 is a "major player" in the development of skin cancer. "The key finding is that roughly 45% of melanomas that do not harbor the known BRAF or NRAS mutations display loss of NF1 function, which leads to activation of the same cancer-causing pathway," said Michael Krauthammer, M.D., associate professor of pathology and the study's corresponding author.

Additionally, researchers observed that melanoma patients with the NF1 mutation were older and had a greater number of mutations in the tumors. These include mutations in the same pathway, collectively known as RASopathy genes.

Yet mutations in NF1 are not sufficient to cause skin cancer, said Ruth Halaban, senior research scientist in dermatology, a member of Yale Cancer Center, and lead author of the study. "Loss of NF1 requires more accompanying changes to make a tumor," she explained. "Our study identified changes in about 100 genes that are present only in the malignant cells and are likely to be causative. This panel of genes can now be used in precision medicine to diagnose malignant lesions and can be applied to personalized cancer treatment."

By testing the response of the melanoma samples to two cancer drugs, the researchers also determined that, in addition to loss of NF1, multiple factors need to be tested to predict the response to the drugs. "It opens the door to more research," said Halaban, who is also principal investigator at Yale SPORE in Skin Cancer.

Explore further: New melanoma driver genes found in largest DNA sequencing study to date

More information: Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas, Nature Genetics, DOI: 10.1038/ng.3361

Related Stories

New melanoma driver genes found in largest DNA sequencing study to date

July 29, 2012
(Medical Xpress) -- Yale Cancer Center geneticists, biochemists, and structural biologists have painted the most comprehensive picture yet of the molecular landscape of melanoma, a highly aggressive and often deadly skin ...

Finding may aid diagnosis of learning disabilities linked to brain tumor syndrome​​

July 22, 2015
New insight into one of the most common inherited causes of brain tumors may help physicians diagnose and treat the learning disabilities that often accompany the condition.

Deadly and distinctive—cancer caused by gene deletions

July 21, 2015
A deadly form of T cell lymphoma is caused by an unusually large number gene deletions, making it distinct among cancers, a new Yale School of Medicine study shows.

A tiny RNA with a big role in melanoma

February 18, 2014
A Yale-led study has identified a key mechanism in the regulation of gene expression that promotes the proliferation of melanoma cells. The finding opens a possible avenue for development of treatments that target this mechanism. ...

Researchers discover mechanism leading to BRAF inhibitor resistance in melanoma

June 19, 2015
The development of targeted therapies has significantly improved the survival of melanoma patients over the last decade; however, patients often relapse because many therapies do not kill all of the tumor cells, and the remaining ...

Yale launches national study of personalized medicine for metastatic melanoma

April 15, 2015
Yale University has launched a multicenter clinical trial, sponsored by Stand Up to Cancer and Melanoma Research Alliance, that will apply the latest in personalized medicine technology to treat metastatic melanoma. The trial, ...

Recommended for you

Newly revealed autism-related genes include genes involved in cancer

September 25, 2017
The identification of genes related to autism spectrum disorder (ASD) could help to better understand the disorder and develop new treatments. While scientists have found many genetic differences in different people with ...

Scientists first to use genetic engineering technique to investigate Tourette's

September 25, 2017
Scientists at Rutgers University-New Brunswick are the first to use a genetic engineering technique to create brain cells from the blood cells of individuals in a three-generation family with Tourette syndrome to help determine ...

Study reveals an ancient Achilles heel in the human genome

September 21, 2017
In a major study published today, researchers at deCODE genetics use whole-genome data from 14,000 people from across the population of Iceland, including 1500 sets of parents and children, to provide the most detailed portrait ...

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.