Scientists propose attacking bioenergetic metabolism to improve anti-cancer therapies

August 31, 2015, Centro Nacional de Investigaciones Oncologicas
Cells dividing. Genetic material is shown in blue and mitochondria in red. During this process, the mitochondria are damaged (yellow signs) making the cells particularly dependent on glucose as a source of energy. Credit: CNIO

Cancer cells become addicted to glucose, which they use as their regular source of energy to grow and develop. Although this was observed over nine decades ago by the German physiologist, Otto Warburg; there is still not therapeutic strategy today that can effectively take advantage of this special energy requirement. The initial approach appears to be simple: the lack of glucose could specifically induce the death of cancer cells.

A new study by the Spanish National Cancer Research Centre Cell and Cancer Unit, headed by the Cell Division and Cancer group of the Spanish National Cancer Research Centre, headed Marcos Malumbres, has now proven that blocking glycolysis - the molecular mechanism that makes it possible to extract energy from - is especially damaging to the division of cancer cells and that specifically acting on this energy-based peculiarity could be effective in treating cancer in combination with chemotherapeutic agents such as .

The research project, published in the prestigious journal, Nature Cell Biology, brought together, in addition to a number of CNIO collaborators, the teams headed by Patricia Boya and Eduardo Rial from the Centre for Biological Research (CIB) in Madrid; Raúl Méndez from the IRB Barcelona; Guillermo Velasco, from the Complutense Univeristy of Madrid; Miguel López, from the University of Santiago de Compostela; and Asish Saha, from Boston University.

Changes In Cellular Metabolism

One of the typical aspects of cancer cells is their capacity to divide in an uncontrolled and almost unlimited manner. "There are many therapeutic agents today, such as taxol, that precisely prevent the division of cancer cells by interrupting the mitosis (an especially delicate part of the process in which the genetic material is passed from the mother cell to the daughter cells)", says María Salazar Roa, CNIO researcher and co-director of the study.

One of the issues the researchers are raising is how cancer cells obtain the energy they need to maintain their high rate of division. Using molecular biology and biochemistry techniques, the authors describe, in line with Warburg's theory, how the AMPK and PFKFB3 proteins become significantly active during mitosis, leading cell metabolism towards glycolysis.

"These proteins detect damage to the mitochondria (the cell's energy sources) in response to cell division and make the energy depend mainly on glucose", clarifies Elena Doménech, whose signature appears first on the paper that she has been preparing as her doctoral thesis.

Greater Addiction To Glucose In The Presence Of Taxol

The researchers also analysed the glucose requirements of cancer cells treated with taxol and, therefore, when mitosis is interrupted. "We can see that antimitotic treatments, such as taxol, increase the need cancer cells have for glucose even more than when there is no treatment", says Salazar.

Based on the fact that cancer cells need more glucose when they are being treated with taxol, the inhibition of glycolysis should enhance the anti-cancer effect of antimitotic drugs. In a way, it would be like forcing them to need more glucose and, at the same time, preventing its use. Then, the would die of starvation as they would be unable to obtain the energy they need to cover their vital functions.

Cancer Cell Death By Starvation

The authors used cellular models taken from breast cancer and mice, finding that, indeed, mitotic drugs, such as taxol, are more efficient when the cells' ability to metabolize glucose is eliminated using PFKFB3 inhibitors.

"The therapeutic value of inhibiting PFKFB3 has often been discussed; however, no appropriate cell-based scenario had been proposed for its clinical use. Our results suggest that PFKFB3 inhibitors can be extremely efficient in combination with antimitotic drugs", explains Malumbres.

Taxol, a compound derived from the bark of the yew tree, is one of the greatest revolutionary elements in the history of chemotherapy over the last 25 years. Today, other taxanes, such as paclitaxel and docetaxel, are part of the standard treatment provided in the case of certain cancers, such as lung, breast and ovarian cancer. Other antimitotic drugs are the alkaloids derived from Vinca (Catharanthus roseus), such as vinblastine, vincristine and vinorelbine, widely used to treat leukaemia, lymphoma and melanoma. The future direction, according to the team from CNIO, will be to identify groups of patients with these and other tumours in which to enhance the effects of antimitotic agents by blocking the tumour's source.

Explore further: Inducing metabolic catastrophe in cancer cells

More information: AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest, DOI: 10.1038/ncb3231

Related Stories

Inducing metabolic catastrophe in cancer cells

August 31, 2015
A study published in The Journal of Cell Biology describes a way to force cancer cells to destroy a key metabolic enzyme they need to survive.

Scientists develop potential new class of cancer drugs in lab

June 26, 2015
In research published in Cancer Cell, Thomas Burris, Ph.D., chair of pharmacology and physiology at Saint Louis University, has, for the first time, found a way to stop cancer cell growth by targeting the Warburg Effect, ...

Fasting and less-toxic cancer drug may work as well as chemotherapy

March 30, 2015
Fasting in combination with chemotherapy has already been shown to kill cancer cells, but a pair of new studies in mice suggests that a less-toxic class of drugs combined with fasting may kill breast, colorectal and lung ...

Discovery of a mechanism that makes tumor cells sugar addicted

April 4, 2014
For almost a hundred years ago is known that cancer cells feel a special appetite for a type of sugar called glucose. The tumor uses this molecule is like the gasoline which depends a sports car to burn faster and grows and ...

CNIO researchers propose a new therapeutic target that prevents cell division

October 8, 2013
Cell division is an essential process for the development of an organism. This process, however, can cause tumour growth when it stops working properly. Tumour cells accumulate alterations in their genetic material, and this ...

Non-invasive imaging instead of repeated biopsy in active monitoring of prostate cancer

April 6, 2014
Your body's cells have two major interconnected energy sources: the lipid metabolism and the glucose metabolism. Most cancers feed themselves by metabolizing glucose, and thus can be seen in Positron Emission Topography (PET) ...

Recommended for you

DNA vaccine leads to immune responses in HPV-related head and neck cancer

September 21, 2018
A therapeutic vaccine can boost antibodies and T cells, helping them infiltrate tumors and fight off human papillomavirus (HPV)-related head and neck cancer. Researchers from the Abramson Cancer Center of the University of ...

In zebrafish, a way to find new cancer therapies, targeting tumor modulators

September 21, 2018
The lab of Leonard Zon, MD, at Boston Children's Hospital has long been interested in making blood stem cells in quantity for therapeutic purposes. Looking for a way to test for their presence in zebrafish, their go-to research ...

What can salad dressing tell us about cancer? Think oil and vinegar

September 20, 2018
Researchers led by St. Jude Children's Research Hospital scientists have identified another way the process that causes oil to form droplets in water may contribute to solid tumors, such as prostate and breast cancer. The ...

Novel biomarker found in ovarian cancer patients can predict response to therapy

September 20, 2018
Despite months of aggressive treatment involving surgery and chemotherapy, about 85 percent of women with high-grade wide-spread ovarian cancer will have a recurrence of their disease. This leads to further treatment, but ...

Testing fluorescent tracers used to help surgeons determine edges of breast cancer tumors

September 20, 2018
A team of researchers with members from institutions in The Netherlands and China has conducted a test of fluorescent tracers meant to aid surgeons performing tumor removal in breast cancer patients. In their paper published ...

Cancer immunotherapy might benefit from previously overlooked immune players

September 20, 2018
Cancer immunotherapy—efforts to boost a patient's own immune system, allowing it to better fight cancer cells on its own—has shown great promise for some previously intractable cancers. Yet immunotherapy doesn't work ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.