Stem cell-derived 'organoids' help predict neural toxicity

September 21, 2015 by Brian Mattmiller, Morgridge Institute for Research
Confocal microscopy image illustrating long range organization for neurons (green) and nuclei (blue) within a developing neural construct. The neural tissues were removed from the inserts and placed on a glass bottom petri dish for imaging. Credit: Michael Schwartz, UW-Madison Department of Biomedical Engineering

A new system developed by scientists at the Morgridge Institute for Research and the University of Wisconsin-Madison may provide a faster, cheaper and more biologically relevant way to screen drugs and chemicals that could harm the developing brain.

Reporting in the Sept. 21, 2015 issue of the Proceedings of the National Academy of Sciences (PNAS), the team describes a new approach for predicting developmental neurotoxicity that uses stem cells to model features of the developing that could be targeted by toxic chemicals or drugs.

The research also is important to addressing growing concerns about the rising incidence worldwide of neurodevelopmental disorders such as autism and the potential role of environmental chemicals.

First, the team produced a model human by culturing stem cell-derived , , and microglia on engineered hydrogels. These precursor cells self-assembled into three-dimensional neural tissue constructs with features that resemble the developing human brain. Such tissues are often referred to as "organoids."

"Several things about this project surprised us," says Michael Schwartz, an assistant scientist in biomedical engineering at UW-Madison and co-lead author of the study with Zhonggang Hou of the Morgridge Institute (now a researcher at Harvard University). "In the beginning, we weren't expecting the kind of complex neural tissues that were ultimately developed."

RNA-sequencing data was collected from neural tissue constructs that were individually exposed to 60 different "training" chemicals—both safe compounds and known toxins—and machine learning was used to build a predictive model from these results. The algorithm proved remarkably accurate: After training with known chemicals using duplicate samples and two time points (240 neural constructs in total), the model correctly classified nine out of 10 additional chemicals in a blinded trial.

Confocal microscopy image illustrating neurons (green), glial cells (red), and nuclei (blue) within a developing neural construct. The neural tissues were removed from the inserts and placed on a glass bottom petri dish for imaging. Credit: Michael Schwartz, Department of Biomedical Engineering, UW-Madison

Schwartz says that this new screening method offers a valuable bridge between testing a single layer of cells in a dish and testing on animals. "These model neural tissues capture a lot more of the complexity than you would find in a monolayer of cells," he says. "They also mimic human physiology, and should be more relevant for predicting toxicity than animal models. The fact that we could apply a machine learning model to achieve 90 percent accuracy this early in the process is fantastic."

This project reflects a diverse collaboration between the Morgridge Institute's regenerative biology team, led by stem cell pioneer James Thomson, and leading UW-Madison experts in tissue engineering and machine learning.

Biomedical Engineering Professor William Murphy led the development of synthetic "hydrogels," or matrices that enable stem cells to grow naturally and self-assemble into a complex network of tissues. And Biostatistics and Medical Informatics Professor David Page developed the using two types of holdout-testing methods.

Thomson says the Wisconsin project has potential to improve drug testing, but with more than 100,000 mostly untested chemical compounds used in commerce, the impact could be even greater for screening chemicals.

"The current toxicity screening tests use multi-generational rat studies and cost about $1 million to test one chemical," he says. "So we need a really high-throughput way to test these compounds, figure out which ones may be the bad actors, then focus on those with more traditional methods."

Three-dimensional organization within the neural constructs: Confocal microscopy image illustrating endothelial cells (green), glial cells (red), and nuclei (blue). The neural tissues were removed from the inserts and placed on a glass bottom petri dish for imaging. Credit: Michael Schwartz, UW-Madison Department of Biomedical Engineering

Schwartz says the RNA sequencing data generated by this study will be beneficial to future studies by helping to identify potential toxic profiles or fingerprints. "These datasets provide valuable information about changes in gene expression that researchers can mine to better understand mechanisms that might be disrupted during human brain development," he says.

One unique element of the project is the level of consistency achieved across hundreds of samples—especially given the cellular diversity of the neural tissue model, which included neurons, glial cells, interconnected vascular networks, and microglia, which is the immune cell of central nervous system. The neural tissue constructs developed in this project are the first to incorporate vascular and microglial components into a 3D model of brain development derived from human pluripotent .

The synthetic material used to help the tissues grow was a key part of the early success of this work. "These hydrogels are minimally complex in that they only present peptides that allow the cells to attach and degrade the matrix. The cells will do the rest of the work on their own—biology does a better job forming tissues than we do," Schwartz says.

In the original proposal, Thomson notes that "if appropriately specified, are brought together in the right environment, a degree of self-assembly, differentiation, and maturation will occur." The synthetic materials used to culture the were key to achieving the consistency needed to successfully screen so many samples.

Explore further: Developing 'tissue chip' to screen neurological toxins

More information: Human pluripotent stem cell-derived neural constructs for predicting neural toxicity, www.pnas.org/cgi/doi/10.1073/pnas.1516645112

Related Stories

Developing 'tissue chip' to screen neurological toxins

September 23, 2014
A multidisciplinary team at the University of Wisconsin-Madison and the Morgridge Institute for Research is creating a faster, more affordable way to screen for neural toxins, helping flag chemicals that may harm human development.

Most complete human brain model to date is a 'brain changer'

August 18, 2015
Scientists at The Ohio State University have developed a nearly complete human brain in a dish that equals the brain maturity of a five-week-old fetus.

New way to repair nerves: Using exosomes to hijack cell-to-cell communication

September 15, 2015
Regenerative medicine using stem cells is an increasingly promising approach to treat many types of injury. Transplanted stem cells can differentiate into just about any other kind of cell, including neurons to potentially ...

Reconstructing 3D neural tissue with biocompatible nanofiber scaffolds and hydrogels

April 1, 2015
Damage to neural tissue is typically permanent and causes lasting disability in patients, but a new approach has recently been discovered that holds incredible potential to reconstruct neural tissue at high resolution in ...

New advancements in 3D designs for neural tissue engineering

April 6, 2015
It is well known that neurological diseases and injuries pose some of the greatest challenges in modern medicine, with few if any options for effectively treating such diagnoses, but recent work suggests a unique approach ...

Recommended for you

The brain's frontal lobe could be involved in chronic pain, according to research

May 25, 2018
A University of Toronto scientist has discovered the brain's frontal lobe is involved in pain transmission to the spine. If his findings in animals bear out in people, the discovery could lead to a new class of non-addictive ...

Aggression neurons identified

May 25, 2018
High activity in a relatively poorly studied group of brain cells can be linked to aggressive behaviour in mice, a new study from Karolinska Institutet in Sweden shows. Using optogenetic techniques, the researchers were able ...

Doctors fail to flag concussion patients for critical follow-up

May 25, 2018
As evidence builds of more long-term effects linked to concussion, a nationwide study led by scientists at UCSF and the University of Southern California has found that more than half of the patients seen at top-level trauma ...

Bursts of brain activity linked to memory reactivation

May 24, 2018
Leading theories propose that sleep presents an opportune time for important, new memories to become stabilized. And it's long been known which brain waves are produced during sleep. But in a new study, researchers set out ...

Study suggests brainwave link between disparate disorders

May 24, 2018
A brainwave abnormality could be a common link between Parkinson's disease, neuropathic pain, tinnitus and depression—a link that authors of a new study suggest could lead to treatment for all four conditions.

Researchers define molecular basis to explain link between a pregnant mother's nutrition and infant growth

May 24, 2018
For years, pregnant mothers have questioned their nutritional habits: "Will eating more cause my baby to be overweight?" Or, "I'm eating for two, so it won't hurt to have an extra serving, right?"

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.