Scientists unveil critical mechanism of memory formation

November 19, 2015, The Scripps Research Institute
Roy Smith is chair of the Department of Metabolism and Aging at the Florida campus of The Scripps Research Institute. Credit: The Scripps Research Institute

In a new study that could have implications for future drug discovery efforts for a number of neurodegenerative diseases, scientists from the Florida campus of The Scripps Research Institute (TSRI) have found that the interaction between a pair of brain proteins has a substantial and previously unrecognized effect on memory formation.

The study, which was published November 19, 2015 by the journal Cell, focuses on two receptors previously believed to be unrelated—one for the , which is involved in learning and memory, reward-motivated behavior, motor control and other functions, and the other for the hormone ghrelin, which has been connected to appetite as well as the distribution and use of energy.

"Our immediate question was, what is the ghrelin receptor doing in the brain since the natural ligand—ghrelin—for it is missing? What is its functional role?" said Roy Smith, chair of TSRI's Department of Metabolism and Aging. "We found in animal models that when these two interact, the ghrelin receptor changes the structure of the dopamine receptor and alters its signaling pathway. This is important because many drugs used currently in the clinic, for example for schizophrenia, have poor compliance because of adverse side effects. This discovery opens the door to using neuronal agents that indirectly modify dopamine signaling by pharmacologically targeting the ghrelin receptor—and potentially dramatically reducing side effects."

"This concept has potentially profound therapeutic implications," said Andras Kern, the first author of the study and a staff scientist in the Smith lab, "pointing to a possible strategy for selective fine-tuning of dopamine signaling in neurons related to memory. By using small molecules binding to the ghrelin receptor we can enhance or inhibit dopamine signaling."

Challenging the current theory, which involves canonical dopamine signaling in neurons, the new study shows that the biologically active ghrelin-dopamine receptor complex produces synaptic plasticity, the ability of the brain's synapses (parts of nerve cells that communicate with other nerve cells) to grow and expand, the biological process underpinning long-term .

In addition, when the researchers blocked the ghrelin receptor, dopamine-dependent memory formation was inhibited in animal models, demonstrating the mechanism is essential to that process.

Combined with conclusions from earlier studies that showed a significant role for the ghrelin receptor in neurons that regulate food intake, insulin release and immune system deterioration due to aging, the new study further expands the ghrelin receptor's importance. In animal models, ghrelin inhibits neuronal loss associated with Parkinson's disease, and stroke, Smith noted, and the new study underlines its possible role in treating loss, age related or otherwise.

"All in all, it's a pretty amazing receptor," he said.

Explore further: Appetite accomplice: Ghrelin receptor alters dopamine signaling

More information: "Hippocampal Dopamine/DRD1 Signaling Dependent on the Ghrelin Receptor," Cell, 2015.

Related Stories

Appetite accomplice: Ghrelin receptor alters dopamine signaling

January 25, 2012
New research reveals a fascinating and unexpected molecular partnership within the brain neurons that regulate appetite. The study, published by Cell Press in the January 26 issue of the journal Neuron, resolves a paradox ...

Researchers find hormone that increases the sex drive of mice

January 27, 2015
Researchers at the University of Gothenburg show that mice that receive a supplement of the "appetite hormone" ghrelin increase their sexual activity. Whether the hormone has the same impact on humans is unknown, but if it ...

Feeding hormone ghrelin modulates ability of rewarding food to evoke dopamine release

July 12, 2011
New research findings to be presented at the upcoming annual meeting of the Society for the Study of Ingestive Behavior (SSIB), the foremost society for research into all aspects of eating and drinking behavior, finds that ...

Ghrelin stimulates an appetite for drinking alcohol

October 29, 2014
Ghrelin is a hormone released by the stomach and it stimulates appetite and food intake. Alcohol is commonly viewed as a psychoactive substance that primarily affects brain function, but it is also a highly caloric food.

Potential obesity treatment targets the two sides of appetite: Hunger and feeling full

May 13, 2015
Our bodies' hormones work together to tell us when to eat and when to stop. But for many people who are obese, this system is off-balance. Now scientists have designed a hormone-like compound to suppress hunger and boost ...

Recommended for you

Brainwaves show how exercising to music bends your mind

February 18, 2018
Headphones are a standard sight in gyms and we've long known research shows listening to tunes can be a game-changer for your run or workout.

To sleep, perchance to forget

February 17, 2018
The debate in sleep science has gone on for a generation. People and other animals sicken and die if they are deprived of sleep, but why is sleep so essential?

Lab-grown human cerebellar cells yield clues to autism

February 16, 2018
Increasing evidence has linked autism spectrum disorder (ASD) with dysfunction of the brain's cerebellum, but the details have been unclear. In a new study, researchers at Boston Children's Hospital used stem cell technology ...

Fragile X syndrome neurons can be restored, study shows

February 16, 2018
Fragile X syndrome is the most frequent cause of intellectual disability in males, affecting one out of every 3,600 boys born. The syndrome can also cause autistic traits, such as social and communication deficits, as well ...

Brain-machine interface study suggests how brains prepare for action

February 16, 2018
Somewhere right now in Pyeongchang, South Korea, an Olympic skier is thinking through the twists and spins she'll make in the aerial competition, a speed skater is visualizing how he'll sneak past a competitor on the inside ...

Humans blink strategically in response to environmental demands

February 16, 2018
If a brief event in our surroundings is about to happen, it is probably better not to blink during that moment. A team of researchers at the Centre for Cognitive Science from Technische Universität Darmstadt published a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.