Newly identified receptor may help gene therapy go viral

January 28, 2016 by Bruce Goldman, Stanford University, Stanford University
DNA
Credit: NIH

Gene therapy, whereby a patient's disorder is treated by inserting a new gene, replacing a defective one, or disabling a harmful one, suffered a setback in 1999, when Jesse Gelsinger, an 18-year-old with a genetic liver disease, died from immense inflammatory complications four days after receiving gene therapy for his condition during a clinical trial. It was quite a while before clinical trials in gene therapy resumed.

But what Stanford virologist Jan Carette, PhD, describes as "intense interest" in the field is once again in full bloom. Gene therapies for several inherited genetic disorders have been approved in Europe, and a gene-therapy approach for countering congenital blindness is close to approval in the United States.

That a virologist would be paying such close attention to this topic isn't odd, as the most well-worked-out method for introducing genetic material to involves the use of a domesticated virus.

If there's one thing viruses are really good at, it's infecting cells. Another viral trick is transferring their genes into cellular DNA—it's part of their modus operandi: hijacking cells' replicative machinery and diverting it to production of numerous copies of themselves. Scientists have become increasingly adept at taming viruses, tweaking them so they retain their ability to infect cells and insert genes, but no longer contain factors that wreck tissues or taunt the infected victim's immune system into a rage destructive to virus and victim alike.

Adenovirus-associated virus—ubiquitous in people and not associated with any disease – makes a great workhorse. Properly bioengineered, it can infect all kinds of cells without replicating itself inside of them or triggering much of an immune response, instead obediently depositing medically relevant genes into the to repair a patient's defective metabolic, enzymatic, or synthetic pathways.

Figuring out how to tailor this viral servant so it will invade cells more efficiently, or invade some kinds of cells and tissues but not others, would broaden gene therapy's utility and appeal. In a series of experiments described in a study in Nature, Carette's group, with collaborators from Oregon Health & Science University and the Netherlands, used a sophisticated method pioneered by Carette to bring that capability a step closer.

A virus can attach itself to a target cell by latching onto a molecule embedded in that cell's surface. In the case of adenovirus-associated virus, that viral-receptor molecule is already known. (The molecule obviously is there for some constructive purpose, which doesn't stop the invading virus from taking advantage of the mutual attraction.) Simply glomming on to the cell's surface isn't enough, though. To get to the all-important nucleus, where the genetic jewelry is ensconced, the virus has to penetrate the cell as well. Until now, the molecule on which adenovirus-associated virus hops a ride downtown was anybody's guess.

In the new study, Carette and his colleagues identified, in human , precisely that transport molecule. This discovery could lead to ways of raising or lowering the molecule's expression in different tissues so that therapeutic genes get delivered to their intended addresses, and nowhere else.

Explore further: Study could help improve gene therapy for heart disease, cancer

More information: S. Pillay et al. An essential receptor for adeno-associated virus infection, Nature (2016). DOI: 10.1038/nature16465

Related Stories

Study could help improve gene therapy for heart disease, cancer

October 12, 2011
A Loyola University Chicago Stritch School of Medicine study could lead to improved gene therapies for conditions such as heart disease and cancer as well as more effective vaccines for tuberculosis, malaria and other diseases.

Human genomic pathways to bronchitis virus therapy

November 18, 2015
Viral replication and spread throughout a host organism employs many proteins, but the process is not very well understood. Scientists at A*STAR have led a collaborative study to learn which host factors play a key role in ...

Viral infections leave a signature on human immune system, study finds

December 15, 2015
A team of immunologists and informatics experts at the Stanford University School of Medicine has identified a distinctive pattern of gene expression that distinguishes people with a viral infection from those with a bacterial ...

Researchers identify way to increase gene therapy success

October 30, 2013
Scientists in The Research Institute at Nationwide Children's Hospital have found a way to overcome one of the biggest obstacles to using viruses to deliver therapeutic genes: how to keep the immune system from neutralizing ...

Recommended for you

Evidence that addictive behaviors have strong links with ancient retroviral infection

September 24, 2018
New research from an international team led by Oxford University's Department of Zoology and the National-Kapodistrian University of Athens, published today in Proceedings of the National Academy of Sciences (PNAS), shows ...

Taking a catnap? Mouse mutation shown to increase need for sleep

September 24, 2018
Sleep is vital for adequate functioning across the animal kingdom, but little is known about the physiological mechanisms that regulate it, or the reasons for natural variation in people's sleep patterns.

Know someone sick? Your own smell might give it away

September 24, 2018
Odors surround us, providing cues about many aspects of personal identity, including health status. Now, research from the Monell Center extends the scope and significance of personal odors as a source of information about ...

New findings on the muscle disease Laing early-onset distal myopathy

September 24, 2018
New avenues are now being opened toward treatment of Laing distal myopathy, a rare disorder that causes atrophy of the muscles in the feet, hands and elsewhere. In a study published in the journal PNAS, researchers have identified ...

Reconstructing healthy liver cells using a nanomaterial-based matrix 

September 24, 2018
NUS pharmaceutical scientists, together with clinicians from the National University Health System (NUHS), have developed a nanomaterial-based hydrogel that encourages amniotic epithelial cells (a type of stem cell) to grow ...

Japanese team creates human oogonia using human stem cells in artificial mouse ovaries

September 21, 2018
A team of researchers with members from several institutions in Japan has successfully generated human oogonia inside of artificial mouse ovaries using human stem cells. In their paper published in the journal Science, the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

betterexists
not rated yet Jan 28, 2016
Are those duty bound Viral Servants enticed by providing any entertainment for them? ...such as a Go Game or a virtual reality gadget?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.