Scientists find new cancer drug target in dual-function protein

June 27, 2016, The Scripps Research Institute
The Scripps Research Institute Professor Xiang-Lei Yang (left) and Research Associate Zhongying Mo were key authors of the new study. Credit: The Scripps Research Institute.

Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.

The new findings, published June 27, 2016 in the journal Nature Structural & Molecular Biology, suggest that future therapies might target this protein, called GlyRS, to halt growth.

"We have potentially found an important target for anti-cancer treatment," said TSRI Professor Xiang-Lei Yang, who led the study.

Catching a Double Agent

Since the early days of life on Earth, GlyRS has played a role in protein synthesis, helping cells function and grow.

The new study, a collaboration with Professor Patrick Griffin's lab on the Florida campus of TSRI, reveals that GlyRS is actually a double agent—in addition to its biologically essential role in making proteins, it can help to further modify proteins in a way that launches cancer growth.

The researchers found that overexpression of GlyRS may lead to too little p27—a protein than Yang compared to a stop sign for cell growth.

Specifically, the team found that GlyRS creates a protective shield around a modifier protein, called NEDD8, and safely "chaperones" it to meet its target protein, called cullin. With NEDD8 in place, cullin is activated to degrade p27.

Kept at the right levels, p27 regulates the cell cycle, stopping potential cancer growth. But when GlyRS levels increase, too much p27 gets degraded and cells multiply unchecked.

"Cancer cells hijack and over-exaggerate the system," said TSRI Research Associate Zhongying Mo, first author of the study. "This can lead to tumorigenesis."

This process is especially dangerous given GlyRS's additional function in synthesis, which supplies cancers with the proteins they need to keep growing. "Ultimately, both functions are linked to cell proliferation and tumorigenesis," Yang said.

Indeed, when Mo analyzed data from a breast cancer tissue database, she found that patients with increased GlyRS had higher mortality.

Although this research is at the basic stage, the team believes it could guide future cancer diagnostics and therapies. For example, measuring GlyRS may provide a marker to help doctors predict how quickly a patient's cancer might progress.

The team now plans to study the effects of GlyRS in different types of cancer and the possibility of developing a drug to inhibit GlyRS.

Explore further: Targeting mutant proteins might be silver bullet for neurodegenerative diseases

More information: Neddylation requires glycyl-tRNA synthetase to protect activated E2, Nature Structural & Molecular Biology, DOI: 10.1038/nsmb.3250

Related Stories

Targeting mutant proteins might be silver bullet for neurodegenerative diseases

October 21, 2015
Scientists have unraveled how mutant molecules damage the nervous system of people with Charcot-Marie-Tooth (CMT) disease, a group of disorders that hinder people's ability to move and feel sensation in their hands and feet, ...

New compound successfully targets hard-to-treat breast cancer

December 16, 2015
Findings from a new study led by scientists from the Florida campus of The Scripps Research Institute (TSRI) suggest a potent new therapeutic approach for a number of hard-to-treat breast cancers.

Researchers identify protein that could prevent tumor growth in cervical cancer

May 31, 2016
UCLA scientists have identified a protein that has the potential to prevent the growth of cervical cancer cells. The discovery could lead to the development of new treatments for the deadly disease.

Scientists solve mystery of nerve disease genes

July 4, 2011
For several years, scientists have been pondering a question about a genetic disease called Charcot-Marie-Tooth (CMT) disease type 2D: how can different types of mutations, spread out across a gene, produce the same condition?

Scientists show commonly prescribed painkiller slows cancer growth

May 25, 2016
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have found that one of the most widely prescribed pain and anti-inflammation drugs slows the growth rate of a specific kind of cancer in animal models ...

Recommended for you

More than 2,500 cancer cases a week could be avoided

March 23, 2018
More than 135,500 cases of cancer a year in the UK could be prevented through lifestyle changes, according to new figures from a Cancer Research UK landmark study published today.

Metastatic lymph nodes can be the source of distant metastases in mouse models of cancer

March 22, 2018
A study by Massachusetts General Hospital (MGH) investigators finds that, in mouse models, cancer cells from metastatic lymph nodes can escape into the circulation by invading nodal blood vessels, leading to the development ...

Could a pap test spot more than just cervical cancer?

March 22, 2018
Pap tests have helped drive down rates of cervical cancer, and a new study suggests they also could be used to detect other gynecologic cancers early.

Researchers identify compound to prevent breast cancer cells from activating in brain

March 22, 2018
Researchers at Houston Methodist used computer modeling to find an existing investigational drug compound for leukemia patients to treat triple negative breast cancer once it spreads to the brain.

Researchers examine role of fluid flow in ovarian cancer progression

March 22, 2018
New research from Virginia Tech is moving physicians closer to pinpointing a predictor of ovarian cancer, which could lead to earlier diagnosis of what is know as the "silent killer."

Probing RNA epigenetics and chromatin structures to predict drug resistance in leukemia

March 22, 2018
Drug resistance is a major obstacle to effective treatment for patients with cancer and leukemia. Epigenetic modifying drugs have been proven effective for some patients with hematologic malignancies, such as myelodysplastic ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.