'Housekeepers' of the brain renew themselves more quickly than first thought

January 10, 2017
Microglia cells (green spider shapes). Credit: University of Southampton

A study, led by the University of Southampton and published in Cell Reports, shows that the turnover of the cells, called Microglia, is 10 times faster, allowing the whole population of Microglia cells to be renewed several times during a lifetime.

"Microglia are constantly scanning the brain to find and fix issues - you could call them the housekeepers of the brain," said Dr Diego Gomez-Nicola, of the University of Southampton, who supervised the study. "We previously thought that would renew themselves so slowly that a whole lifetime would not suffice to renew the whole population. But now we can talk about up to six renewal cycles in a lifetime. We now need to reinterpret how they interact and regulate the function of other brain to understand their full potential."

The study, led by PhD student, Katharine Askew, assessed the proliferation of microglia, from both mouse and human brain, using staining of sections with specific antibodies alongside live imaging of the cells.

It also found that the number of remains relatively unchanged from birth until ageing and is maintained by the spatial and temporal coupling of cell division and cell death.

The research was carried out in collaboration with researchers at the University of Tubingen (Germany), University of Oxford, University of Hamburg (Germany) and Achucarro Basque Center for Neuroscience (Spain).

The Southampton team believe this new research will help the understanding of Microglia's behaviour in diseases like Alzheimer's Disease. In Alzheimer's microglia contribute to the person's cognitive decline.

Dr Diego Gomez-Nicola added: "This finding provides a basic piece of cell biology, needed to understand the functions of microglia and their interaction with other cells in the brain. Understanding the clockwork of microglia will help understand their behaviour in psychiatric and neurodegenerative diseases of the brain like Alzheimer's."

Explore further: Rejuvenating the brain's disposal system

More information: Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain , Cell Reports, DOI: 10.1016/j.celrep.2016.12.041

Related Stories

Rejuvenating the brain's disposal system

December 21, 2016
A characteristic feature of Alzheimer's disease is the presence of so called amyloid plaques in the patient's brain - aggregates of misfolded proteins that clump together and damage nerve cells. Although the body has mechanisms ...

Study explains mechanisms behind glioblastoma influence on the immune system

September 12, 2016
Glioblastomas exert an influence on the microglia, immune cells of the brain, which causes them to stimulate cancer growth rather than attacking it. In a study published in the journal Nature Immunology, an international ...

Researchers find the incident commander in the brain's defence system

December 8, 2016
Imagine seeing a building on fire. You grab the phone and call the fire service. What happens next can be compared to the discovery made by researchers from Aarhus University. They have discovered that a specific type of ...

Immune cells may protect against Alzheimer's

May 19, 2016
Clusters of immune cells in the brain previously associated with Alzheimer's actually protect against the disease by containing the spread of damaging amyloid plaques, a new Yale University School of Medicine study shows.

Researchers discover role of microglia during early progression of Alzheimer's disease

October 5, 2015
For the first time, researchers have determined how toxic tau fibrils spread by the help of brain immune cells called microglia during the early stages of Alzheimer's disease (AD). The discovery of this new pathway may lead ...

The brain may show signs of aging earlier than old age

March 18, 2016
A new study published in Physiological Genomics suggests that the brain shows signs of aging earlier than old age. The study found that the microglia cells—the immune cells of the brain—in middle-aged mice already showed ...

Recommended for you

Brain recovery longer than clinical recovery among athletes following concussion, research suggests

August 24, 2017
University athletes with a recent concussion had changes in their brain structure and function even after they received medical clearance to return to play, a new study has found.

Exercising immediately after study may help you remember

August 24, 2017
Exercise may be the secret to retaining information, according to new research from UNSW that may encourage more physical activity in classrooms and nursing homes.

Scientists discover common obesity and diabetes drug reduces rise in brain pressure

August 23, 2017
Research led by the University of Birmingham, published today in Science Translational Medicine, has discovered that a drug commonly used to treat patients with either obesity or Type II diabetes could be used as a novel ...

Use of brain-computer interface, virtual avatar could help people with gait disabilities

August 23, 2017
Researchers from the University of Houston have shown for the first time that the use of a brain-computer interface augmented with a virtual walking avatar can control gait, suggesting the protocol may help patients recover ...

Researcher working to develop new tool for non-invasive neuromodulation of human brain

August 23, 2017
A UTA researcher is developing a technology that will map and image the effects of infrared light shone on the human brain that may be able to modulate and improve brain waves and circuits at certain spots in the brain.

Physicist reports binary marker of preclinical and clinical Alzheimer's disease

August 23, 2017
A new technique shows high potential for providing a discrete, non-invasive biomarker of Alzheimer's disease (AD) at the individual level during both preclinical and clinical stages. The proposed biomarker has a large effect ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.