Evaluating tissue response to biomaterials with a new bone-implant interaction model

January 5, 2017
Mary Ann Liebert, Inc., publishers

To understand the molecular mechanisms involved in the interaction of bone with orthopedic implants comprised of novel biomaterials, researchers have made a mouse model in which they can assess early tissue responses to surfaces such as bioactive glass. The ease of genetically modifying this mouse model makes it especially valuable in designing novel biomaterials for use in regenerative medicine, as describe in an article published in Tissue Engineering, Part C Methods, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Tissue Engineering website until February 5, 2017.

The article entitled "A Bone-Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction" is coauthored by Wenlong Liu, PhD and colleagues from Shenzen Institutes of Advanced Technology, Chinese Academy of Sciences, The University of Hong Kong, and The Chinese University of Hong Kong, Shenzhen, China. They present results demonstrating the feasibility and reliability of the using various biomaterials.

"This very accessible and elegant model brings the assessment of bone replacing biomaterial to a new level," says Tissue Engineering, Part C: Methods Co-Editor-in-Chief John A. Jansen, DDS, PhD, Professor Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, Netherlands.

Explore further: Researchers propose mechanism for spread of metastatic breast cancer to bone

More information: Wenlong Liu et al, A Bone–Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction, Tissue Engineering Part C: Methods (2016). DOI: 10.1089/ten.tec.2016.0250

Related Stories

Recommended for you

As cells age, the fat content within them shifts

January 19, 2017

As cells age and stop dividing, their fat content changes, along with the way they produce and break down fat and other molecules classified as lipids, according to a new University at Buffalo study.

What causes sleepiness when sickness strikes

January 19, 2017

It's well known that humans and other animals are fatigued and sleepy when sick, but it's a microscopic roundworm that's providing an explanation of how that occurs, according to a study from researchers at the Perelman School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.