Scientists identify two brain networks influencing how we make decisions

February 2, 2017, eLife
Credit: Wikimedia Commons

Scientists at the Medical Research Council Brain Network Dynamics Unit at the University of Oxford have pinpointed two distinct mechanisms in the human brain that control the balance between speed and accuracy when making decisions.

Their discovery, published in eLife, sheds new light on the networks that determine how quickly we choose an option, and how much information we need to make that choice. A more detailed understanding of this intricate wiring in the holds the key to developing better treatments for neurological disorders such as Parkinson's disease.

The fundamental trade-off between speed and accuracy in has been studied for more than a century, with a number of studies suggesting that the subthalamic nucleus region of the brain plays a key role.

"Previous behavioural studies of decision making do not tell us about the actual events or networks that are responsible for making speed-accuracy adjustments," says senior author Peter Brown, Professor of Experimental Neurology at the University of Oxford. "We wanted to address this by measuring the exact location and timing of electrical activity in the subthalamic nucleus and comparing the results with behavioural data collected while a decision-making task is being performed."

Brown and his team first studied the reaction times of 11 patients with Parkinson's disease and 18 healthy participants, who were each asked to perform a moving-dots task. This required them to decide whether a cloud of moving dots appeared to be moving to the left or the right. The difficulty of the task was varied by changing the number of dots moving in one direction, and the participants were given randomly alternating instructions to perform the task with either speed or accuracy.

The researchers found that participants made much faster decisions when the task was easier - with the dots moving in a single direction - and when instructed to make a quick decision. They also found, in line with previous studies, that participants made significantly more errors during tests where they spent longer making a decision after being instructed to emphasise accuracy.

Using a computational model, they saw that it took longer in the more difficult tests for the brain to accumulate the necessary information to reach a critical threshold and make a decision. When the participants were asked to focus on speed, this threshold was significantly lower than when they focused on accuracy.

"The next step was to determine the activated networks in the brain that control these behavioural modifications and the trade-off between fast and accurate decisions," explains first author and postdoctoral fellow Damian Herz. "We measured the of groups of nerve cells within the subthalamic nucleus in patients with Parkinson's disease, who had recently been treated with . We found two distinct neural networks that differ in the way they are ordered and the way they respond to tasks.

"One network increases the amount of information required before executing a decision and is therefore more likely to be activated when is important, while the second network tends to lower this threshold, especially when the choice needs to be made quickly."

The findings add to the increasing evidence that the pre-frontal cortex region of the brain contributes to decision making and opens up further interesting avenues to explore.

"We know that changes in activity of one of the sites we identified is also related to movement control," adds Brown. "Close relationships between these could mean that a common signal is responsible for adjustments in both the speed of decision and of the resulting movement. A better understanding of these mechanisms might make it possible to focus therapeutic interventions on specific neural circuits to improve treatment of neurological disorders in the future."

Explore further: Study explains why mistakes slow us down, but not necessarily for the better

More information: Damian M Herz et al, Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks, eLife (2017). DOI: 10.7554/eLife.21481

Related Stories

Study explains why mistakes slow us down, but not necessarily for the better

January 21, 2016
Taking more time to make decisions after a mistake arises from a mixture of adaptive neural mechanisms that improve the accuracy and maladaptive mechanisms that reduce it, neuroscientists at New York University have found. ...

Brain activity predicts the force of your actions

November 24, 2016
Researchers have found a link between the activity in nerve clusters in the brain and the amount of force generated in a physical action, opening the way for the development of better devices to assist paralysed patients.

How the brain responds to choices

October 7, 2016
Choices, it is commonly understood, lead to action—but how does this happen in the brain? Intuitively, we first make a choice between the options. For example, when approaching a yellow traffic light, we need to decide ...

Timing may be key to understanding cognitive problems in Parkinson's disease

December 15, 2016
When a cheetah chases a gazelle, it's not raw speed that predicts the outcome of the contest. Instead, it's the animal that times its movements better that has the advantage. That ability to consciously guide movements over ...

Ever-so-slight delay improves decision-making accuracy

March 7, 2014
Columbia University Medical Center (CUMC) researchers have found that decision-making accuracy can be improved by postponing the onset of a decision by a mere fraction of a second. The results could further our understanding ...

Brain mechanisms in drug addiction—new brain pathways revealed

November 24, 2016
UNSW researchers have identified new brain pathways linked to addiction and shown that by manipulating them, drug seeking behaviour and motivation for alcohol can be reduced.

Recommended for you

Mechanisms of harmful overhydration and brain swelling

May 22, 2018
We are all familiar with the drawbacks of dehydration, but we rarely hear about the harmful effects of overhydration. For one, excess fluid accumulation can lead to dangerously low sodium levels in the blood or hyponatremia—a ...

Mice brain structure linked with sex-based differences in anxiety behavior

May 22, 2018
Using male individuals has long been a tradition in scientific mice studies. But new research enforces the importance of using a balanced population of male and female mice.

Subtle hearing loss while young changes brain function, study finds

May 22, 2018
Cranking up your headphones or scrambling for a front-row spot at rock shows could be damaging more than your hearing.

In brain stimulation therapy less might be more

May 22, 2018
One of the promising non-invasive brain therapeutic methods is the repetitive transcranial magnetic stimulation (rTMS). During such a procedure, a magnetic coil is placed near the head of the patient and a magnetic pulse ...

What helps form long-term memory also drives the development of neurodegenerative disease

May 22, 2018
Scientists have just discovered that a small region of a cellular protein that helps long-term memories form also drives the neurodegeneration seen in Amyotrophic Lateral Sclerosis (ALS). This small part of the Ataxin-2 protein ...

Cell types underlying schizophrenia identified

May 22, 2018
Scientists at Karolinska Institutet in Sweden and University of North Carolina have identified the cell types underlying schizophrenia in a new study published in Nature Genetics. The findings offer a roadmap for the development ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.