Toxic liver effects of fifteen drugs predicted using computational approach

February 2, 2017, Public Library of Science
Multiscale analysis of drug-induced cellular responses. The application of a multiscale modeling approach in humans allows the representation of drug concentration-time profiles in liver tissue and ultimately enables a comparative analysis of simulated drug-induced changes at the cellular scale. Credit: Thiel, Kuepfer

A team of researchers has used a computational modeling approach to analyze and compare the toxic effects of fifteen different drugs on the liver, according to a study in PLOS Computational Biology.

Drugs prescribed for various medical conditions can cause harmful side effects. Lab experiments with can help reveal the underlying molecular mechanisms by which these drugs cause , which could inform better prevention and treatment efforts. However, alone cannot reliably predict actual effects in living patients.

To improve translation of lab data to patients, Christoph Thiel of RWTH Aachen University, Germany, and colleagues recently developed a new strategy that uses computational modeling to simulate how liver cells in the body respond to different doses of different drugs. The approach integrates experimental observations with knowledge of how drugs are distributed and metabolized after they enter the body.

The researchers had previously demonstrated their approach in a proof-of-concept study. In the new study, the approach was applied to simulate and compare the potentially toxic liver effects of fifteen different drugs at clinically relevant doses.

The scientists developed whole-body models to simulate the fate of each drug after ingestion and validated the models using experimental data from scientific literature. These models were then coupled with lab data to predict each drug's effects on the liver at patient level. The researchers found that the drugs fell into different groups that caused similar responses, including which genes would be transcribed in response to toxic doses.

While further validation is required, the method has the potential to lead to faster diagnosis of toxic liver side effects in patients. It could help reveal which gene transcripts could serve as early signs of toxicity and which combinations might be particularly dangerous, for both new and existing drugs.

"Consistently applied to the design of clinical development programs, the approach presented has the potential to early identify medical and economic risks of new drugs," says study co-author Lars Kuepfer.

Explore further: Paracetamol study could open door for way to treat liver damage

More information: Thiel C, Cordes H, Fabbri L, Aschmann HE, Baier V, Smit I, et al. (2017) A Comparative Analysis of Drug-Induced Hepatotoxicity in Clinically Relevant Situations. PLoS Comput Biol 13 (2): e1005280. DOI: 10.1371/journal.pcbi.1005280

Related Stories

Paracetamol study could open door for way to treat liver damage

January 31, 2017
Scientists have shed new light on how the common painkiller paracetamol causes liver damage.

Gene therapy for metabolic liver diseases shows promise in pigs

July 27, 2016
With a shortage of donor organs, Mayo Clinic is exploring therapeutic strategies for patients with debilitating liver diseases. Researchers are testing a new approach to correct metabolic disorders without a whole organ transplant. ...

Unexpected activity of two enzymes helps explain why liver cancer drugs fail

December 13, 2016
Some cancers are caused by loss of enzymes that should keep cell growth in check. On the flip side, some are caused by over-activation of enzymes that enhance cell growth. Yet drugs that inhibit the overactive enzymes have ...

Molecular 'pillars' team up to protect liver from toxic fat buildup

November 18, 2016
As obesity rates rise in the United States, so does the incidence of liver diseases. In fact, 80 percent of obese people are believed to have non-alcoholic fatty liver disease, or NAFLD, while another related liver disorder, ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.