Researchers identify how inflammation spreads through the brain after injury

March 8, 2017

Researchers have identified a new mechanism by which inflammation can spread throughout the brain after injury. This mechanism may explain the widespread and long-lasting inflammation that occurs after traumatic brain injury, and may play a role in other neurodegenerative diseases.

The findings were published today in a study in the Journal of Neuroinflammation.

This new understanding has the potential to transform how is understood, and, ultimately, how it is treated. The researchers showed that microparticles derived from inflammatory cells are markedly increased in both the brain and the blood following experimental traumatic (TBI). These microparticles carry pro-inflammatory factors that can activate normal immune cells, making them potentially toxic to brain neurons. Injecting such microparticles into the brains of uninjured animals creates progressive inflammation at both the injection site and eventually in more distant sites.

Research has found that neuroinflammation often goes on for years after TBI, causing chronic brain damage. The researchers say that the microparticles may play a key role in this process.

Chronic inflammation has been increasingly implicated in the progressive cell loss and neurological changes that occur after TBI. These inflammatory microparticles may be a key mechanism for chronic, progressive brain inflammation and may represent a new target for treating brain injury.

The researchers on the paper include four University of Maryland School of Medicine researchers: Alan Faden, Stephen R. Thom, Bogdan A. Stoica, and David Loane.

"These results potentially provide a new conceptual framework for understanding brain inflammation and its relationship to brain cell loss and neurological deficits after head injury, and may be relevant for other neurodegenerative disorders such as Alzheimer disease in which neuroinflammation may also play a role," said Dr. Faden. "The idea that brain inflammation can trigger more inflammation at a distance through the release of microparticles may offer novel treatment targets for a number of important brain diseases."

The researchers studied mice, and found that in animals who had a , levels of microparticles in the blood were much higher. Because each kind of cell in the body has a distinct fingerprint, the researchers could track exactly where the microparticles came from. The microparticles they looked at in this study are released from cells known as microglia, immune cells that are common in the brain. After an injury, these cells often go into overdrive in an attempt to fix the injury. But this outsized response can change protective inflammatory responses to chronic destructive ones.

The findings have important potential clinical implications. The researchers say that microparticles in the blood have the potential to be used as a biomarker - a way to determine how serious a brain injury may be. This could help guide treatment of the injuries, whose severity is often difficult to gauge.

They also found that exposing the inflammatory to a compound called PEG-TB could neutralize them. This opens up the possibility of using that compound or others to treat TBI, and perhaps even other .

Explore further: Connection between brain inflammation and CTE identified

Related Stories

Connection between brain inflammation and CTE identified

November 2, 2016
For the first time, researchers have shown that inflammation in the brain may have direct involvement in the development of chronic traumatic encephalopathy (CTE). In addition, they found that the number of years one plays ...

Early intervention in brain inflammatory pathways may improve stroke recovery

November 28, 2016
Intracerebral hemorrhage is a type of stroke characterized by the rupture of a blood vessel within the brain. When the brain is exposed to blood, local immune cells become activated, triggering inflammation that promotes ...

What causes brain problems after traumatic brain injury? Studies have a surprising answer

January 15, 2015
A new paper by researchers at the University of Maryland School of Medicine (UM SOM) argues that there is a widespread misunderstanding about the true nature of traumatic brain injury and how it causes chronic degenerative ...

Do spinal cord injuries cause subsequent brain damage?

November 14, 2014
Most research on spinal cord injuries has focused on effects due to spinal cord damage and scientists have neglected the effects on brain function. University of Maryland School of Medicine (UM SOM) researchers have found ...

Experimental drug shows promise in treating Alzheimer's disease

October 25, 2016
An experimental drug shows promise in treating Alzheimer's disease by preventing inflammation and removing abnormal protein clumps in the brain that are associated with the disease, suggests a study in mice presented at the ...

Treating traumatic brain injury

January 6, 2017
After a traumatic brain injury (TBI), the brain produces an inflammatory response. This prolonged swelling is known as cerebral edema and can be fatal. Unfortunately, the only medications available just address symptoms and ...

Recommended for you

Researchers discover spinal cord neurons that inhibit distracting input to focus on task at hand

December 8, 2017
We think of our brain as masterminding all of our actions, but a surprising amount of information related to movement gets processed by our spinal cord.

The mysterious case of the boy missing most of his visual cortex who can see anyway

December 8, 2017
(Medical Xpress)—A team of researchers with Monash University recently gave a presentation at a neuroscience conference in Australia outlining their study of the brain of a seven-year-old boy who was missing most of his ...

How a seahorse-shaped brain structure may help us recognize others

December 8, 2017
How do we recognize others? How do we know friend from foe, threat from reward? How does the brain compute the multitude of cues telling us that Susan is not Erica even though they look alike? The complexity of social interactions—human ...

Brain networks that help babies learn to walk ID'd

December 8, 2017
Scientists have identified brain networks involved in a baby's learning to walk—a discovery that eventually may help predict whether infants are at risk for autism.

Why we can't always stop what we've started

December 7, 2017
When we try to stop a body movement at the last second, perhaps to keep ourselves from stepping on what we just realized was ice, we can't always do it—and Johns Hopkins University neuroscientists have figured out why.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.