Research team discovers how immunotherapy can fight some cancers

April 19, 2017

What if our immune system could cure cancer? This logic seems almost too simple to be true, but it forms the basis of an emerging cancer treatment—immunotherapy. André Veillette, a researcher at the Institut de recherches cliniques de Montréal (IRCM) / Montreal Clinical Research Institute and a professor of Université de Montréal's Faculty of Medicine, has a new article today in Nature about this rapidly developing field. Dr. Veillette and his team have discovered why immunotherapy would work in some patients and not at all in others: the SLAMF7 molecule plays a predominant role.

Immunotherapy: An emerging field in cancer treatment

Our immune system has an army of comprised of macrophages, T lymphocytes and , which destroy microbes and other invaders. But manage to fool these brave soldiers using a variety of stratagems. Immunotherapy works to defeat these stratagems and provides a number of significant benefits. Unlike more invasive therapies such as chemotherapy and radiotherapy, it targets cancer cells and can spare healthy ones.

However, is not always successful. A considerable number of do not respond well to this type of . In addition, immunotherapy causes some patients to suffer major side effects due to a hyperactivated immune system. In these cases, it may have been better to try traditional treatments like radiotherapy or chemotherapy from the outset.

Dr. Veillette's research group wanted to understand why immunotherapy is effective in certain cases. The researchers were particularly interested in a potential treatment involving CD47, a protein already recognized as an evasion mechanism. "CD47 acts like a chameleon," explains Dr. Jun Chen, first author of the study and a postdoctoral fellow in Dr. Veillette's laboratory. "It is found on the surface of cancer cells and makes them appear to be healthy: it tells the immune system not to destroy them, which leaves the door open for tumour growth and metastasis," adds Dr. Veillette, who is also Director of the IRCM Molecular Oncology research unit, Full Research Professor in the Department of Medicine at the Université de Montréal and Adjunct Professor at McGill University.

CD47 has been found at high levels in a variety of cancers, including blood cancers. Needless to say, molecules that prevent CD47 from binding to immune cells—CD47 inhibitors—are being extensively studied as potential new anti-cancer treatments. But the IRCM team has identified another very important component of this mechanism: another molecule, SLAMF7, must be present on cancer cells for immune cells to be able to destroy them. So for people whose cancers do not have SLAMF7, the administration of CD47 inhibitors could be counterproductive.

Shift to precision medicine

The discovery of Dr. Veillette's group could be the key to predicting which patients will respond to CD47 inhibitors. Determining whether SLAMF7 is present in the patient's cancer could help establish, from the outset, whether CD47 inhibitors are a good choice of treatment. By preselecting patients in this way, incompatible patients could be rapidly redirected to an alternative treatment with a greater chance of success. This is what is known as precision medicine.

The IRCM laboratory hopes that this discovery will also contribute to the success of upcoming CD47 inhibitor clinical trials. "There are currently more potential new treatments than there are patients available to test them in ," says Dr. Veillette. "To take advantage of the full potential of emerging treatments like immunotherapy, we should not use them as universal treatments, since very useful ones could be overlooked, thereby hindering our progress in the fight against ."

Explore further: A new target for immuno-oncology therapies

More information: Jun Chen et al, SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin, Nature (2017). DOI: 10.1038/nature22076

Related Stories

A new target for immuno-oncology therapies

November 16, 2015
By studying a type of immune cells, a team of researchers at the IRCM led by André Veillette, MD, identified the mechanism of action for a new target for novel immune-oncology treatments. Their discovery is published today ...

Identifying a novel target for cancer immunotherapy

April 12, 2017
Targeting a molecule called B7-H4—which blocks T-cells from destroying tumor cells—could lead to the development of new therapies that boost the immune system's ability to fight cancer, according to a review published ...

Study identifies a potential therapeutic target for lung cancer

June 13, 2016
Small-cell lung cancer (SCLC) is one of the deadliest types of cancer, and it has been several decades since new treatment options have been approved for this disease. Although recent advances in cancer treatments have focused ...

Patients' immune system may influence effectiveness of cancer immunotherapy

April 2, 2017
Higher or lower levels of certain immune cells in cancer patients may be associated with how well they respond to immunotherapy, according to preliminary results of a study conducted by researchers at the University of Pittsburgh ...

Antibody fights pediatric brain tumors in preclinical testing, study finds

March 15, 2017
Five types of pediatric brain cancer were safely and effectively treated in mice by an antibody that causes immune cells to engulf and eat tumors without hurting healthy brain cells, according to a new study by researchers ...

Potential new cancer treatment activates cancer-engulfing cells

February 6, 2017
Macrophages are a type of white blood cell that can engulf and destroy cancer cells. A research group led by Professor MATOZAKI Takashi, Associate Professor MURATA Yoji, and YANAGITA Tadahiko (Kobe University Department of ...

Recommended for you

Researchers unravel novel mechanism by which tumors grow resistant to radiotherapy

November 23, 2017
A Ludwig Cancer Research study has uncovered a key mechanism by which tumors develop resistance to radiation therapy and shown how such resistance might be overcome with drugs that are currently under development. The discovery ...

African Americans face highest risk for multiple myeloma yet underrepresented in research

November 23, 2017
Though African-American men are three times more likely to be diagnosed with multiple myeloma, a type of blood cancer, most scientific research on the disease has been based on people of European descent, according to a study ...

Encouraging oxygen's assault on iron may offer new way to kill lung cancer cells

November 22, 2017
Blocking the action of a key protein frees oxygen to damage iron-dependent proteins in lung and breast cancer cells, slowing their growth and making them easier to kill. This is the implication of a study led by researchers ...

One-size treatment for blood cancer probably doesn't fit all, researchers say

November 22, 2017
Though African-American men are three times more likely to be diagnosed with a blood cancer called multiple myeloma, most scientific research on the disease has been based on people of European descent, according to a study ...

One in four U.S. seniors with cancer has had it before

November 22, 2017
(HealthDay)—For a quarter of American seniors, a cancer diagnosis signals the return of an old foe, new research shows.

Combination immunotherapy targets cancer resistance

November 22, 2017
Cancer immunotherapy drugs have had notable but limited success because in many cases, tumors develop resistance to treatment. But researchers at Yale and Stanford have identified an experimental antibody that overcomes this ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.