Antibody fights pediatric brain tumors in preclinical testing, study finds

March 15, 2017
Brain tumors shrank in mice that received a new therapeutic antibody (bottom row). Credit: S. Gholamin et al., Science Translational Medicine (2017)

Five types of pediatric brain cancer were safely and effectively treated in mice by an antibody that causes immune cells to engulf and eat tumors without hurting healthy brain cells, according to a new study by researchers at the Stanford University School of Medicine.

The immune therapy studied consists of against a cellular "don't eat me" signal called CD47. Developed at Stanford, the anti-CD47 antibodies are already being tested in early clinical trials in adults who have tumors outside the central nervous system. But they have never been tried against pediatric tumors until now.

The new study pitted anti-CD47 antibodies against human that had been grown in a dish and implanted in mice. The tests targeted five aggressive pediatric brain tumors: Group 3 medulloblastoma, atypical teratoid rhabdoid tumor, primitive neuroectodermal tumor, pediatric glioblastoma and diffuse intrinsic pontine glioma.

"For many of these tumors, there's just no treatment," said Samuel Cheshier, MD, PhD, assistant professor of neurosurgery. "Diagnosis is synonymous with a death sentence."

The study will be published March 15 in Science Translational Medicine. Cheshier shares senior authorship of the paper with Irving Weissman, MD, the Virginia and D.K. Ludwig Professor for Clinical Investigation in Cancer Research and professor of pathology and of developmental biology. The lead authors are postdoctoral scholar Sharareh Gholamin, MD, and senior research scientist Siddhartha Mitra, PhD.

'Very, very active tumor-killing'

Many childhood brain tumors are inoperable. Some also lack effective chemotherapy drugs, or require radiation and chemotherapy so toxic to the developing brain that they cause devastating long-term side effects. In contrast with the toxic profile of existing treatments, the preclinical trials conducted by Cheshier's team indicate that anti-CD47 antibodies specifically target cancer while leaving healthy brain cells alone.

"The most exciting aspect of our findings is that no matter what kind of brain tumor we tested it against, this treatment worked really well in the animal models," said Cheshier, who is also a pediatric neurosurgeon at Lucile Packard Children's Hospital Stanford. In mice that had been implanted with both normal human brain cells and human brain cancer cells, "there was no toxicity to normal human cells but very, very active tumor-killing in vivo," he said.

Brains of mice that did or did not receive a new therapeutic antibody (top and bottom). The treatment led to smaller tumors (green, glowing regions). Credit: S. Gholamin et al., Science Translational Medicine (2017)

Given the encouraging results of the new study and the ongoing research on anti-CD47 antibodies in adults, the antibodies are expected to reach clinical trials in children with brain cancer in one to two years, he added.

The anti-CD47 antibodies help the immune system to detect an important difference between cancerous and healthy cells: Cancer cells make "eat me" signals that are displayed on their cell surfaces, while healthy cells do not. However, cancer cells hide these "eat me" signals by producing large quantities of CD47, a "don't eat me" protein that is found on the surface of both healthy and malignant cells. When CD47 is blocked by antibodies, called macrophages can detect the cancer cells' "eat me" signals. Macrophages then selectively target, engulf and destroy the cancer cells without harming healthy cells, because normal cells lack the "eat me" signals.

Study highlights

The Stanford team conducted a long series of experiments using different combinations of and in culture, as well as in various mouse models in which human brain cancer cells had been implanted in mice. Highlights of their experiments included the following:

  • The team confirmed that all the various cancers tested express the CD47 "don't eat me" signal, as well as an "eat me" signal called CRT.
  • In a dish, Group 3 medulloblastoma cells treated with anti-CD47 antibodies were engulfed and eaten by macrophages, while healthy brain cells were not harmed.
  • In mice with a partially functioning immune system that had been transplanted with any of the five types of , treating the mice with anti-CD47 antibodies significantly reduced the presence of those tumors.
  • In mice, the antibody crossed the blood-brain barrier in significant amounts after being injected into the peritoneal space. This was an important finding because some other forms of immunotherapy are unable to cross this barrier. In mice transplanted with Group 3 medulloblastoma, anti-CD47 antibodies were more effective at treating the primary tumor if given in the peritoneal space, but better at treating metastases if given directly into the cerebrospinal fluid.
  • Mixing healthy human with anti-CD47 antibodies did not cause any damage to the neural progenitor cells, either in their viability or ability to proliferate, suggesting that the antibodies would not interfere with brain development. In mice with a fully functioning immune system that had been implanted with cells from a high-grade glioma cell line, anti-CD47 antibodies significantly prolonged survival of the animals, from an average of 21 days for those in the untreated group to 32 and 38 days for those receiving low and high doses of antibodies, respectively.
  • In treated with anti-CD47 antibodies, their brains, examined after treatment, showed that macrophages concentrated at the sites of the tumors. Further tests showed that macrophages got inside the tumors.

The anti-CD47 antibodies did not completely eliminate all tumors, suggesting that the antibodies may not be able to completely penetrate large tumors, the researchers noted.

To maximize their effects, the antibodies will likely need to be combined with other forms of cancer treatment, a concept the researchers plan to investigate further, Cheshier said. In the future, patients may receive combinations of immune therapies and lower doses of standard cancer treatments, he said, adding, "The question is: Can we wisely combine immune therapies and other approaches to make cancer treatment more efficacious and less toxic?"

Anti-CD47 antibodies also may have an advantage over other immunotherapies in that they activate macrophages, which completely engulf and eat cancer cells, Cheshier noted. "In many forms of immunotherapy, the cells you target die and spill their contents, which can cause dysregulated immune responses," he said. Anti-CD47 antibodies may produce fewer such side effects, though the idea remains to be tested.

Explore further: Potential new cancer treatment activates cancer-engulfing cells

More information: "Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors," Science Translational Medicine stm.sciencemag.org/lookup/doi/ … scitranslmed.aaf2968

Related Stories

Potential new cancer treatment activates cancer-engulfing cells

February 6, 2017
Macrophages are a type of white blood cell that can engulf and destroy cancer cells. A research group led by Professor MATOZAKI Takashi, Associate Professor MURATA Yoji, and YANAGITA Tadahiko (Kobe University Department of ...

Study identifies a potential therapeutic target for lung cancer

June 13, 2016
Small-cell lung cancer (SCLC) is one of the deadliest types of cancer, and it has been several decades since new treatment options have been approved for this disease. Although recent advances in cancer treatments have focused ...

'Eat me' signal whets appetites for tumor-devouring dendritic cells

August 31, 2015
By changing the mouse model they use to study how the immune system responds to cancer, a team of researchers hopes to shift the focus for one emerging form of cancer immunotherapy back to the standard approach—relying ...

Scientists identify new approach for treating skin cancer

August 1, 2016
Using new and innovative immune-therapeutic approaches to silence "don't eat me" signaling proteins recognized by specialized cells of the immune system, University of California, Irvine molecular biologists and their colleagues ...

Silencing cancer cell communication may reduce the growth of tumors

January 30, 2017
In several types of cancer, elevated expression of the chemokine receptor CCR4 in tumors is associated with poor patient outcomes. Communication through CCR4 may be one mechanism that cancer cells use to create a pro-tumor ...

Anti-CD47 antibody may offer new route to successful cancer vaccination

May 21, 2013
(Medical Xpress)—Scientists at the School of Medicine have shown that their previously identified therapeutic approach to fight cancer via immune cells called macrophages also prompts the disease-fighting killer T cells ...

Recommended for you

Bolstering fat cells offers potential new leukemia treatment

October 16, 2017
Killing cancer cells indirectly by powering up fat cells in the bone marrow could help acute myeloid leukemia patients, according to a new study from McMaster University.

Study reveals complex biology, gender differences, in kidney cancer

October 13, 2017
A new study is believed to be the first to describe the unique role of androgens in kidney cancer, and it suggests that a new approach to treatment, targeting the androgen receptor (AR), is worth further investigation.

Cholesterol byproduct hijacks immune cells, lets breast cancer spread

October 12, 2017
High cholesterol levels have been associated with breast cancer spreading to other sites in the body, but doctors and researchers don't know the cause for the link. A new study by University of Illinois researchers found ...

New drug hope for rare bone cancer patients

October 12, 2017
Patients with a rare bone cancer of the skull and spine - chordoma - could be helped by existing drugs, suggest scientists from the Wellcome Trust Sanger Institute, University College London Cancer Institute and the Royal ...

Scientists pinpoint surprising origin of melanoma

October 12, 2017
Led by Jean-Christophe Marine (VIB-KU Leuven), a team of researchers has tracked down the cellular origin of cutaneous melanoma, the deadliest form of skin cancer. The team was surprised to observe that these very aggressive ...

Team finds a potentially better way to treat liver cancer

October 12, 2017
A Keck School of Medicine of USC research team has identified how cancer stem cells survive. This finding may one day lead to new therapies for liver cancer, one of the few cancers in the United States with an incidence rate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.