Researchers identify 'signal' crucial to stem cell function in hair follicles

May 24, 2017 by Collene Ferguson
Researchers identify 'signal' crucial to stem cell function in hair follicles
Jeff Biernaskie’s research identifies a factor essential for dermal stem cells to continuously divide during tissue regeneration. Credit: Riley Brandt, University of Calgary

Stem cell researchers at the University of Calgary have found another piece of the puzzle behind what may contribute to hair loss and prevent wounds from healing normally.

Jeff Biernaskie's research, published recently in the scientific journal npj Regenerative Medicine identifies a key signalling protein called platelet-derived growth factor (PDGF). This protein is critical for driving self-renewal and proliferation of dermal stem cells that live in hair follicles and enable their unique ability to continuously regenerate and produce new hair.

"This is the first study to identify the signals that influence dermal stem cell function in your skin," says Biernaskie, an associate professor in comparative biology and experimental medicine at the University of Calgary's Faculty of Veterinary Medicine, and Calgary Firefighters Burn Treatment Society Chair in Skin Regeneration and Wound Healing. Biernaskie is also a member of the Alberta Children's Hospital Research Institute.

"What we show is that in the absence of PDGF signalling hair follicle dermal stem cells are rapidly diminished because of their inability to generate new stem cells and produce sufficient numbers of mature dermal cells within the hair follicle."

Biernaskie and his team of researchers study dermal stem cells located within hair follicles. They are looking to better understand dermal stem cell function and find ways to use these cells to develop novel therapies for improved wound healing after injury, burns, disease or aging.

This study, co-authored by Raquel Gonzalez and Garrett Moffatt, shows that PDGF is key to maintaining a well-functioning stem cell population in skin. And in normal skin, if you don't have enough of it the stem cell pools start to shrink, meaning eventually the hair will no longer grow and will not heal as well.

"It's an important start in terms of how we might modulate these cells towards developing future therapies that could regenerate new dermal tissue or maintain growth" says Biernaskie. 

Biernaskie's lab is looking at the potential role of stem cells in and the potential to stimulate these to improve regeneration, as opposed to forming scars. 

Explore further: Using stem cells to grow new hair

More information: Raquel González et al. Platelet-derived growth factor signaling modulates adult hair follicle dermal stem cell maintenance and self-renewal, npj Regenerative Medicine (2017). DOI: 10.1038/s41536-017-0013-4

Related Stories

Using stem cells to grow new hair

January 27, 2015
In a new study from Sanford-Burnham Medical Research Institute (Sanford-Burnham), researchers have used human pluripotent stem cells to generate new hair. The study represents the first step toward the development of a cell-based ...

Converting adult human cells to hair-follicle-generating stem cells

January 28, 2014
If the content of many a situation comedy, not to mention late-night TV advertisements, is to be believed, there's an epidemic of balding men, and an intense desire to fix their follicular deficiencies.

Scientists find skin cells at the root of balding, gray hair

May 8, 2017
UT Southwestern Medical Center researchers have identified the cells that directly give rise to hair as well as the mechanism that causes hair to turn gray – findings that could one day help identify possible treatments ...

Growth factor responsible for triggering hair follicle generation during wound healing identified

June 2, 2013
Researchers in the Perelman School of Medicine at the University of Pennsylvania have determined the role of a key growth factor, found in skin cells of limited quantities in humans, which helps hair follicles form and regenerate ...

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.