Using stem cells to grow new hair

January 27, 2015, Sanford-Burnham Medical Research Institute
Scientists at Sanford-Burnham used iPSCs to grow new hair. Credit: Sanford-Burnham Medical Research Institute

In a new study from Sanford-Burnham Medical Research Institute (Sanford-Burnham), researchers have used human pluripotent stem cells to generate new hair. The study represents the first step toward the development of a cell-based treatment for people with hair loss. In the United States alone, more than 40 million men and 21 million women are affected by hair loss. The research was published online in PLOS One yesterday.

"We have developed a method using human to create new capable of initiating human hair growth. The method is a marked improvement over current methods that rely on transplanting existing hair follicles from one part of the head to another," said Alexey Terskikh, Ph.D., associate professor in the Development, Aging, and Regeneration Program at Sanford-Burnham. "Our stem cell method provides an unlimited source of cells from the patient for transplantation and isn't limited by the availability of existing hair follicles."

The research team developed a protocol that coaxed human pluripotent to become dermal papilla cells. They are a unique population of cells that regulate formation and growth cycle. Human dermal papilla cells on their own are not suitable for hair transplants because they cannot be obtained in necessary amounts and rapidly lose their ability to induce hair-follicle formation in culture.

"In adults, dermal papilla cells cannot be readily amplified outside of the body and they quickly lose their hair-inducing properties," said Terskikh. "We developed a protocol to drive human pluripotent stem cells to differentiate into dermal papilla cells and confirmed their ability to induce hair growth when transplanted into mice."

"Our next step is to transplant human dermal papilla cells derived from human pluripotent stem cells back into human subjects," said Terskikh. "We are currently seeking partnerships to implement this final step."

Explore further: Converting adult human cells to hair-follicle-generating stem cells

More information: PLOS One, journals.plos.org/plosone/arti … journal.pone.0116892

Related Stories

Converting adult human cells to hair-follicle-generating stem cells

January 28, 2014
If the content of many a situation comedy, not to mention late-night TV advertisements, is to be believed, there's an epidemic of balding men, and an intense desire to fix their follicular deficiencies.

New 3D hair follicle model to accelerate cure for baldness

July 19, 2013
Hair loss is a common disorder that affects many men and women due to aging or medical conditions. Current FDA-approved drugs can minimize further hair loss but are unable to regrow new hair. The Institute of Bioengineering ...

Hair regeneration method is first to induce new human hair growth

October 21, 2013
Researchers at Columbia University Medical Center (CUMC) have devised a hair restoration method that can generate new human hair growth, rather than simply redistribute hair from one part of the scalp to another. The approach ...

Recommended for you

New blood test to detect liver damage in under an hour

May 24, 2018
A quick and robust blood test that can detect liver damage before symptoms appear has been designed and verified using clinical samples by a team from UCL and University of Massachusetts.

Gut bacteria play key role in anti-seizure effects of ketogenic diet

May 24, 2018
UCLA scientists have identified specific gut bacteria that play an essential role in the anti-seizure effects of the high-fat, low-carbohydrate ketogenic diet. The study, published today in the journal Cell, is the first ...

Selective neural connections can be reestablished in retina after injury, study finds

May 24, 2018
The brain's ability to form new neural connections, called neuroplasticity, is crucial to recovery from some types of brain injury, but this process is hard to study and remains poorly understood. A new study of neural circuit ...

Space-like gravity weakens biochemical signals in muscle formation

May 23, 2018
Astronauts go through many physiological changes during their time in spaceflight, including lower muscle mass and slower muscle development. Similar symptoms can occur in the muscles of people on Earth's surface, too. In ...

Eating at night, sleeping by day swiftly alters key blood proteins

May 21, 2018
Staying awake all night and sleeping all day for just a few days can disrupt levels and time of day patterns of more than 100 proteins in the blood, including those that influence blood sugar, energy metabolism, and immune ...

Hotter bodies fight infections and tumours better—researchers show how

May 21, 2018
The hotter our body temperature, the more our bodies speed up a key defence system that fights against tumours, wounds or infections, new research by a multidisciplinary team of mathematicians and biologists from the Universities ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Scottingham
5 / 5 (1) Jan 27, 2015
That's one of the worst pics I've seen on physorg. Yeesh!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.