Some mother cells kick DNA damage 'down the road' to offspring

May 17, 2017 by Jim Scott
Credit: CC0 Public Domain

A new University of Colorado Boulder study has shown that some dividing human cells are "kicking the can down the road," passing on low-level DNA damage to offspring, causing daughter cells to pause in a quiescent, or dormant, state previously thought to be random in origin.

The process occurs even among genetically identical grown under identical, optimal conditions, said CU Boulder Assistant Professor Sabrina Spencer, principal investigator on the study. The study indicates some inherit not only DNA damage, but also  a lengthened cell-quiescent period the more damage there is.

"We have linked DNA damage in mother cells to the fate of daughter cells in the subsequent cell cycle," said Spencer of the Department of Chemistry and Biochemistry.

"The study shows that entry into this quiescent state is not random, but rather is influenced by a 'memory' of events that occurred in the previous generation or generations."

The study appears in the May 16 issue of Cell Reports.

Several years ago, Spencer developed a new technology using fluorescent biosensors that allow her team to identify, isolate and characterize quiescent cells in real time. With the ability to dynamically track changes in such cells, it may now be possible to determine to what extent a "bypass" of the quiescent state by cells in the presence of stress could be a precursor or even a hallmark of cancer, she said.

"Such findings could contribute to the development of biomarkers to identify that may be particularly sensitive to chemotherapeutic agents due to their inability to enter quiescence in response to stress," the team wrote in Cell Press.

The fact that mother cells are passing on DNA damage to their offspring was a surprising finding because the researchers expected mother cells would repair their own damage before dividing into daughter cells, said Spencer.

"In our world and the cellular world, we would think would deal with their problems and not pass them on to their offspring," Spencer said. "Clearly this is not happening in many of the cells we have studied."

The new study also may have implications for aging since some quiescent daughter cells with unrepaired DNA may move into a senescent state - essentially the loss of a cell's power to undergo division and growth, said Spencer.

Explore further: Tumor suppressor key in maintaining stem cell status in muscle

Related Stories

Tumor suppressor key in maintaining stem cell status in muscle

January 17, 2017
A gene known to suppress tumor formation in a broad range of tissues plays a key role in keeping stem cells in muscles dormant until needed, a finding that may have implications for both human health and animal production, ...

Focus on quiescent cells brings to light the essential role of RNA interference in transcription control

November 9, 2016
Some cells just don't get the respect they deserve. In fact, most cells don't. Over 99 percent of the innumerable cells on our planet exist in a state of quiescence. Pick up a handful of soil: it contains thousands of microorganisms, ...

Sleeping cells' survival instincts: A double-edged sword?

October 13, 2016
For researchers who study aging, a central riddle remains: If the human body has evolved to protect itself, why are cells unable to cope with the challenges associated with getting old?

Researchers take step toward eliminating cancer recurrence

September 1, 2016
Scientists from the United States have made an important step toward eliminating cancer recurrence by combining immunotherapy with chemotherapy. Specifically, they found that chemotherapy alone leads to two types of dormant ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

katesisco
not rated yet May 17, 2017
Isn't this the same as the long known effect of a pregnant woman gaining overall health by dumping the detrimental onging damage in her body into the fetus?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.