CRISPR/Cas9 gene editing reverses Huntington's in mouse model

June 19, 2017
Mutant huntingtin protein aggregates, seen as darkened nuclei, disappear after gene editing vectors are injected into mouse brain. Credit: Journal of Clinical Investigation

Disrupting a problematic gene in brain cells can reverse Huntington's disease pathology and motor symptoms in a mouse model of the inherited neurological disorder, scientists report.

The researchers used CRISPR/Cas9 , delivered by a viral vector, to snip part of a gene producing toxic protein aggregates in the brains of 9-month old mice. Weeks later, where the vector was applied, aggregated proteins had almost disappeared. In addition, the motor abilities of the mice had improved, although not to the level of .

The results are scheduled for publication on June 18, 2017 in Journal of Clinical Investigation.

The findings open up an avenue for treating Huntington's as well as other inherited neurodegenerative diseases, although more testing of safety and long-term effects are needed, says senior author Xiao-Jiang Li, MD, PhD, distinguished professor of human genetics at Emory University School of Medicine.

Huntington's disease is caused by a gene encoding a toxic protein (mutant huntingtin or mHTT) that causes brain cells to die. Symptoms commonly appear in mid-life and include uncontrolled movements, balance problems, mood swings and cognitive decline.

Touted widely for its potential, CRISPR/Cas9 gene editing has not been used to treat any neurodegenerative disease in humans. Several concerns need to be addressed before its use, such as effective delivery and the safety of tinkering with DNA in brain cells. A similar gene editing approach in mice, but using a different technology (zinc finger nucleases), was reported for Huntington's disease in 2012.

The mice used in this study have a human mutant replacing one of the mouse huntingtin . In these mice, motor problems and aggregated mutant huntingtin can be observed around the age of 9 months.

When planning gene editing, the scientists selected guide sequences that targeted both the normal copy and the disease-driving copy of the huntingtin gene. This "non-allele specific" approach would not need to be customized to the patient's genome, unlike other gene editing proposals for Huntington's disease.

The Emory researchers have previously shown that mice older than four months do not need the huntingtin gene to stay healthy, suggesting that treatment strategies that aim to shut off both copies of the gene in adult humans could be safe.

Clinical studies have begun of such treatments, which probably will require continuous administration of the gene-silencing drug. In contrast, a gene editing treatment could be more durable, if it hits enough cells.

To get CRISPR/Cas9-guided enzymes into brain cells, the researchers harnessed a widely used gene therapy vehicle based on AAV (adeno-associated virus). The scientists injected viral vectors carrying CRISPR/Cas9 into the striatum region of the brains of Huntington's disease model mice at the age of 9 months. The striatum is a region of the brain that controls body movement and motor function.

This led to a "dramatic decrease" in aggregated mutant huntingtin in the striatum three weeks later. The study reveals the capacity of brain cells to heal themselves if the genetic source of the toxic proteins is removed, the scientists say.

In comparison with control Huntington's mice, CRISPR/Cas9-injected mice showed significant improvements on tests of motor control, balance and grip strength, although they did not recover to the point where they performed as well as control .

Addressing genetic safety concerns, the researchers showed that in , frameshift mutations triggered by CRISPR/Cas9 occurred predominantly within the huntingtin gene and not in other potential off-target genes.

However, the long-term effects and safety of injecting AAV in the to express CRISPR/Cas9 remain to be rigorously tested before applying this approach to patients, Li says.

The co-first authors of the paper are postdoctoral fellows Su Yang, PhD at Emory University and Renbao Chang, PhD at Institute of Genetics and Developmental Biology, Chinese Academy of Sciences.

Emory co-authors include Zhaohui Qin, PhD, associate professor of biostatistics, Peng Jin, PhD, professor of human genetics, and Shihua Li. MD, professor of human genetics. Xiao-Jiang Li also is affiliated with the Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University.

The research was supported by the National Institute of Neurological Disorders and Stroke (NS036232, NS101701, NS095279) and the National Natural Science Foundation of China (grant 91332206).

Explore further: Huntington's disease gene dispensable in adult mice

More information: Su Yang et al, CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington?s disease, Journal of Clinical Investigation (2017). DOI: 10.1172/JCI92087

Related Stories

Huntington's disease gene dispensable in adult mice

March 7, 2016
Adult mice don't need the gene that, when mutated in humans, causes the inherited neurodegenerative disorder Huntington's disease.

Activity of Huntington's disease gene curbed for six months in mice

September 9, 2016
A single injection of a new treatment has reduced the activity of the gene responsible for Huntington's disease for several months in a trial in mice.

Gene-editing alternative corrects Duchenne muscular dystrophy

April 12, 2017
Using the new gene-editing enzyme CRISPR-Cpf1, researchers at UT Southwestern Medical Center have successfully corrected Duchenne muscular dystrophy in human cells and mice in the lab.

CAR T cells more powerful when built with CRISPR, researchers find

February 22, 2017
Researchers from Memorial Sloan Kettering Cancer Center (MSK) have harnessed the power of CRISPR/Cas9 to create more-potent chimeric antigen receptor (CAR) T cells that enhance tumor rejection in mice. The unexpected findings, ...

Recommended for you

Brain recovery longer than clinical recovery among athletes following concussion, research suggests

August 24, 2017
University athletes with a recent concussion had changes in their brain structure and function even after they received medical clearance to return to play, a new study has found.

Exercising immediately after study may help you remember

August 24, 2017
Exercise may be the secret to retaining information, according to new research from UNSW that may encourage more physical activity in classrooms and nursing homes.

Scientists discover common obesity and diabetes drug reduces rise in brain pressure

August 23, 2017
Research led by the University of Birmingham, published today in Science Translational Medicine, has discovered that a drug commonly used to treat patients with either obesity or Type II diabetes could be used as a novel ...

Use of brain-computer interface, virtual avatar could help people with gait disabilities

August 23, 2017
Researchers from the University of Houston have shown for the first time that the use of a brain-computer interface augmented with a virtual walking avatar can control gait, suggesting the protocol may help patients recover ...

Researcher working to develop new tool for non-invasive neuromodulation of human brain

August 23, 2017
A UTA researcher is developing a technology that will map and image the effects of infrared light shone on the human brain that may be able to modulate and improve brain waves and circuits at certain spots in the brain.

Physicist reports binary marker of preclinical and clinical Alzheimer's disease

August 23, 2017
A new technique shows high potential for providing a discrete, non-invasive biomarker of Alzheimer's disease (AD) at the individual level during both preclinical and clinical stages. The proposed biomarker has a large effect ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.