Blood test identifies key Alzheimer's marker

July 19, 2017 by Tamara Bhandari
Credit: Washington University School of Medicine

A new study led by researchers at Washington University School of Medicine in St. Louis suggests that measures of amyloid beta in the blood have the potential to help identify people with altered levels of amyloid in their brains or cerebrospinal fluid. Currently, the only way to detect amyloid beta in the brain is via PET scanning, which is expensive and not widely available, or a spinal tap, which is invasive and requires a specialized medical procedure.

Decades before with Alzheimer's disease develop memory loss and confusion, their brains become dotted with plaques made of a sticky protein - called amyloid beta - that is thought to contribute to the disease and its progression.

Currently, the only way to detect amyloid beta in the is via PET scanning, which is expensive and not widely available, or a spinal tap, which is invasive and requires a specialized . But now, a study led by researchers at Washington University School of Medicine in St. Louis suggests that measures of amyloid beta in the have the potential to help identify people with altered levels of amyloid in their brains or .

Ideally, a blood-based screening test would identify people who have started down the path toward Alzheimer's years before they could be diagnosed based on symptoms.

"Our results demonstrate that this amyloid beta blood test can detect if amyloid has begun accumulating in the brain," said Randall J. Bateman, MD, the Charles F. and Joanne Knight Distinguished Professor of Neurology and the study's senior author. "This is exciting because it could be the basis for a rapid and inexpensive blood screening test to identify people at high risk of developing Alzheimer's disease."

The findings will be announced July 19 at the Alzheimer's Association International Conference in London and published online in the journal Alzheimer's and Dementia.

As the brain engages in daily tasks, it continually produces and clears away amyloid beta. Some is washed into the blood, and some floats in the cerebrospinal fluid, for example. If amyloid starts building up, though, it can collect into plaques that stick to neurons, triggering neurological damage.

A blood test would be cheaper and less invasive than PET scans or spinal taps, but previous studies have found that measures of total levels of amyloid beta in the blood don't correlate with levels in the brain.

So Bateman and colleagues measured blood levels of three amyloid subtypes - amyloid beta 38, amyloid beta 40 and amyloid beta 42—using highly precise measurement by mass spectrometry to see if any correlated with levels of amyloid in the brain.

The researchers studied 41 people ages 60 and older. Twenty-three were amyloid-positive, meaning they had signs of cognitive impairment. PET scans or spinal taps in these patients also had detected the presence of in the brain or amyloid alterations in the cerebrospinal fluid. The researchers also measured amyloid subtypes in 18 people who had no buildup of amyloid in the brain.

To measure amyloid levels, production and clearance over time, the researchers drew 20 blood samples from each person over a 24-hour period. They found that levels of amyloid beta 42 relative to amyloid beta 40 were consistently 10 to 15 percent lower in the people with amyloid plaques.

"Amyloid plaques are composed primarily of amyloid beta 42, so this probably means that it is being deposited in the brain before moving into the bloodstream," Bateman said.

"The differences are not big, but they are highly consistent," he explained. "Our method is very sensitive, and particularly when you have many repeated samples as in this study—more than 500 samples overall—we can be highly confident that the difference is real. Even a single sample can distinguish who has amyloid plaques."

By averaging the ratio of amyloid beta 42 to 40 over each individual's 20 samples, the researchers could classify people accurately as amyloid-positive or -negative 89 percent of the time. On average, any single time point was also about 86 percent accurate.

Amyloid plaques are one of the two characteristic signs of Alzheimer's disease; the other sign is the presence of tangles of a brain protein known as tau. David Holtzman, MD, the Andrew B. and Gretchen P. Jones Professor and head of the Department of Neurology at the School of Medicine, is developing a blood-based test for tau that could complement the test.

"If we had a for tau as well, we could combine them to get an even better idea of who is most at risk of developing Alzheimer's disease," Bateman said. "That would be a huge step forward in our ability to predict, and maybe even prevent, Alzheimer's disease."

Explore further: Brain's ability to dispose of key Alzheimer's protein drops dramatically with age

More information: Ovod V, Bollinger JG, Mawuenyega KG, Hicks TJ, Schneider T, Kasten T, Sigurdson W, Sullivan M, Donahue TA, Ramsey K, Paumier K, Holtzman DM, Morris JC, Benzinger TLS, Fagan AM, Patterson BW, and Bateman RJ. Concentrations and Stable Isotope Label Kinetics of Human Plasma Amyloid Beta. Alzheimer's Association International Conference. Oral presentation. July 19, 2017.

Ovod V, Ramsey K, Mawuenyega KG, Bollinger JG, Hicks T, Schneider T, Sullivan M, Paumier K, Holtzman DM, Morris JC, Benzinger T, Fagan AM, Patterson B, and Bateman RJ. Amyloid beta concentrations and stable isotope labeling kinetics of human plasma specific to CNS amyloidosis. Alzheimer's and Dementia. July 19, 2017.

Related Stories

Brain's ability to dispose of key Alzheimer's protein drops dramatically with age

July 31, 2015
The greatest risk factor for Alzheimer's disease is advancing age. After 65, the risk doubles every five years, and 40 percent or more of people 85 and older are estimated to be living with the devastating condition.

Never before seen images of early stage Alzheimer's disease

March 13, 2017
Researchers at Lund University in Sweden have used the MAX IV synchrotron in Lund – the strongest of its kind in the world - to produce images that predate the formation of toxic clumps of beta-amyloid, the protein believed ...

'Pac-Man' gene implicated in Alzheimer's disease

July 26, 2016
A gene that protects the brain from the harmful build-up of amyloid-beta, one of the causative proteins implicated in Alzheimer's disease, has been identified as a new target for therapy by NeuRA researchers.

Alzheimer's brain change measured in humans

June 12, 2013
Scientists at Washington University School of Medicine in St. Louis have measured a significant and potentially pivotal difference between the brains of patients with an inherited form of Alzheimer's disease and healthy family ...

In elderly, hardening of arteries linked to plaques in brain

October 16, 2013
Even for elderly people with no signs of dementia, those with hardening of the arteries are more likely to also have the beta-amyloid plaques in the brain that are a hallmark of Alzheimer's disease, according to a study published ...

Recommended for you

Dementia with Lewy bodies: Unique genetic profile identified

December 15, 2017
Dementia with Lewy bodies has a unique genetic profile, distinct from those of Alzheimer's disease or Parkinson's disease, according to the first large-scale genetic study of this common type of dementia.

Major cause of dementia discovered

December 11, 2017
An international team of scientists have confirmed the discovery of a major cause of dementia, with important implications for possible treatment and diagnosis.

Canola oil linked to worsened memory and learning ability in Alzheimer's

December 7, 2017
Canola oil is one of the most widely consumed vegetable oils in the world, yet surprisingly little is known about its effects on health. Now, a new study published online December 7 in the journal Scientific Reports by researchers ...

Genetics study suggests that education reduces risk of Alzheimer's disease

December 7, 2017
The theory that education protects against Alzheimer's disease has been given further weight by new research from the University of Cambridge, funded by the European Union. The study is published today in the BMJ.

Healthy mitochondria could stop Alzheimer's

December 6, 2017
Alzheimer's disease is the most common form of dementia and neurodegeneration worldwide. A major hallmark of the disease is the accumulation of toxic plaques in the brain, formed by the abnormal aggregation of a protein called ...

Alzheimer's damage in mice reduced with compound that targets APOE gene

December 6, 2017
People who carry the APOE4 genetic variant face a substantial risk for developing Alzheimer's disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.