Blood vessels are not designed to fight infection

July 10, 2017, Osaka University
Figure 1: A schematic of the mechanism how invading bacteria expand in endothelial cells. Endothelial cells cannot efficiently recognize invading GAS because of lower endothelial activity to ubiquitinate bacteria, leading to less bacterial clearance by autophagy. Clearance of GAS artificially coated with ubuiquitin in endothelial cells suggests that endothelial cells retains basic machinery required to carry out the process. It indicates that autophagy in endothelial cells could be a prospective therapeutic target for bacterial infection in future. Credit: Osaka University

Osaka University researchers show endothelial cells are vulnerable to bacterial infection because they lack certain immune machinery common in other cells.

Most infections enter the body through organs that are in constant contact with the outside environment, such as the lungs and intestines. Accordingly, the epithelial lining these organs have developed an immune system that removes the infection by using intracellular machinery known as xenophagy.

"Xenophagy is a type of autophagy that acts on foreign invasions. Autophagy is a method through which a cell destroys unneeded or defective material," explained Osaka University Professor Tamotsu Yoshimori.

While these organs are well prepared to combat an invasion, should an infection enter the vascular system, it risks beings transmitted throughout the body via blood. Yoshimori therefore wondered if lining blood vessels are as equipped with xenophagy machinery as epithelial cells. In a new published study, his team of researchers discovered that they are not.

"We found that Group A Steptocococcus (GAS) can survive and multiply in endothelial cells, but epithelial cells remove GAS infection via xenophagy. The reason for the difference is insufficient ubiquitination of the invading GAS," he said.

Ubiquitination is a common process used by autophagy that marks the cellular material to be disposed. These markings result in a membrane structure that forms around the material, a structure that was absent around GAS in endothelial cells but present around GAS in epithelial cells.

Blood vessels are not designed to fight infection
Figure 2: Electron microscopy image of GAS engulfed by autophagosome. Artificial coating of GAS with ubiquitin enables endothelial cells to facilitate autophagosome membrane formation surrounding GAS (a white arrowhead). Credit: Osaka University

"If we coated the GAS with ubiquitin before infecting the cell, we found xenophagy worked in endothelial cells comparably to epithelial cells," said Dr. Tsuyoshi Kawabata, a member of the lab who managed the project.

"If ubiquitin could activate xenophagy, then we know that the cell has all the equipment it needs. The challenge is to identify what molecular targets can activate the system. This information could be used for drug discovery."

Knowing that ubiquitination is mediate by nitric oxide signaling, the group searched for chemicals that regulate this signaling pathway, finding that the chemical 8-nitro-cGMP was expressed at much lower levels in endothelial cells than epithelial cells. Indeed, inhibiting this molecule allowed GAS to thrive in , but had no effect on GAS survival in endothelial cells. However, despite these promising results, Kawabata worries nitric oxide regulators are not practical drug targets.

"The problem with nitric oxide is that it is a vasodilator. There is an evolutionary reason that the vascular system does not produce too much nitric oxide because it risks severely low blood pressure."

Instead, Kawabata believes that attention should be given to other molecular pathways that regulate the ubiquitination. While the study pointed to nitric oxide signaling, it also found evidence that -oxide independent factors could regulate the recruitment of ubiquitin to execute xenophagy on GAS.

"We believe there is a -independent pathway that regulates ubiquitination. This pathway could make a promising drug target for a novel approach to fighting GAS," he said.

Explore further: Ca2+, the intercellular signal in arterioles

More information: Shiou-Ling Lu et al. Endothelial cells are intrinsically defective in xenophagy of Streptococcus pyogenes, PLOS Pathogens (2017). DOI: 10.1371/journal.ppat.1006444

Related Stories

Ca2+, the intercellular signal in arterioles

July 4, 2017
Vasoconstriction must be balanced with vasodilation, particularly in the arterioles that supply tissues with blood. Endothelial cells protrude through holes in the internal elastic lamina in arterioles to make contact with ...

Discovery of nitric oxide delivery mechanism may point to new avenue for treating high blood pressure

November 14, 2012
(Medical Xpress)—Researchers at the University of Virginia School of Medicine have shed new light on blood pressure regulation with the discovery of an unexpected mechanism by which hemoglobin controls the delivery of nitric ...

Researchers looking inside vessels to understand blood's ebb and flow

September 4, 2013
Researchers have known for some time that the blood vessels that transport blood to and from tissues and organs in the body are more than just bodily pipelines. Arterioles and capillaries, the small vessels, actually play ...

Sensor for blood flow discovered in blood vessels

November 3, 2016
Physical forces like blood pressure and the shear stress of flowing blood are important parameters for the tension of blood vessels. Scientists have been looking for a measurement sensor for many years that enables the translation ...

Recommended for you

Implantable islet cells come with their own oxygen supply

April 25, 2018
Since the 1960s, researchers have been interested in the possibility of treating type 1 diabetes by transplanting islet cells—the pancreatic cells that are responsible for producing insulin when blood glucose concentration ...

'Incompatible' donor stem cells cure adult sickle cell patients

April 25, 2018
Doctors at the University of Illinois Hospital have cured seven adult patients of sickle cell disease, an inherited blood disorder primarily affecting the black community, using stem cells from donors previously thought to ...

Research explains link between exercise and appetite loss

April 24, 2018
Ever wonder why intense exercise temporarily curbs your appetite? In research described in today's issue of PLOS Biology, Albert Einstein College of Medicine researchers reveal that the answer is all in your head—more specifically, ...

Mammary stem cells challenge costly bovine disease

April 24, 2018
Mastitis is the most expensive disease in the dairy industry. Each clinical case can cost a dairy farmer more than $400 and damages both the cow's future output as well as her comfort.

Fruit fly study identifies new gene linked to aortic aneurysms

April 24, 2018
An interdisciplinary team of researchers has identified a new gene linked to human aortic aneurysms. By combining comprehensive genetic studies in the fruit fly, dataset searches and analysis of diseased human aortic tissue, ...

Scientists manipulate 'satellite cells' to speed healing

April 24, 2018
Muscle aches and pains, whether from stretching, strenuous exercise or just normal wear and tear, can put a crimp in your day, a limp in your step and be an actual pain in the neck. But no matter the severity, stem cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.