CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017, Washington University School of Medicine
Chromosomes (blue) have protective end caps called telomeres that help them maintain stability. In this image, the telomeres (green) are abnormally short, which leads to DNA damage that accrues over time. Using the gene editing technology CRISPR, scientists at Washington University School of Medicine in St. Louis have shed light on a rare syndrome that causes children to lose the ability to manufacture vital blood cells. The syndrome, dyskeratosis congenita, is characterized by shortened telomeres. Credit: Marquet Minor

Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

The research, at Washington University School of Medicine in St. Louis, suggests new lines of investigation into how to treat this condition—dyskeratosis congenita—which is characterized by shortened telomeres. Telomeres, the protective caps on the ends of chromosomes, help maintain DNA stability. Short telomeres lead to progressive DNA damage that accumulates over time.

The study appears July 27 in the journal Stem Cell Reports.

"Lengthening telomeres seems like a logical way to help these patients, but it could possibly come with its own set of problems," said senior author Luis F.Z. Batista, PhD, an assistant professor of medicine. "We would worry about encouraging cancer formation, for example, as high levels of the protein that lengthens telomeres—telomerase—are commonly found with cancer. But if we could find a way to block the signaling pathways that short telomeres activate—that specifically lead to the problems in —it could allow these patients to continue making ."

Children with dyskeratosis congenita experience progressive , eventually losing the ability to make , and platelets. They are also at high risk of leukemia. Severity of the condition varies widely, but those with severe forms often die of bone marrow failure in young adulthood. The damage of short telomeres is most apparent in rapidly dividing cell types, such as those in the skin, nail beds, mucous membranes and blood. Early signs of the disease include misshapen fingernails, abnormal skin pigmentation and white patches in the mouth.

Because the disease is challenging to study in mice—as mice deficient in telomerase don't fully experience bone marrow failure—the researchers used CRISPR to edit into human two mutations associated with the disease. The researchers then showed that these reproduced the telomere-shortening defect seen in patients with the disorder. Batista and co-senior author Christopher M. Sturgeon, PhD, an assistant professor of medicine, observed that these methods represent a novel and accurate human model of the disorder.

With this model, the scientists further showed how the defect leads to the gradual loss of blood cell formation from human embryonic stem cells and, importantly, how blocking the downstream effects of the defect can reverse this loss, leading to normal production of blood cells. Blocking this signaling pathway did not lengthen telomeres or stop their shortening, but allowed the manufacturing of different types of blood cells to continue, according to the study.

The researchers also teased out an important nuance in the detrimental effect of short telomeres during early development. Using an approach that mimics early embryonic development, they found that the defect did not prevent the formation and function of blood cells produced during the first month of gestation that allow an embryo to fuel its rapidly growing oxygen needs. Rather, the defect arrested the production of adult-like blood cell progenitors, such as red blood cells that carry oxygen or white blood cells that fight infection.

"This was tremendously interesting from a developmental biology perspective as well as from a disease modeling perspective," Sturgeon said. "We now have a platform to really dig deeper into understanding the mechanisms behind some forms of bone marrow failure."

Interestingly, the researchers implicated high levels of a protein called p53 as one of the signals that leads to the drop in adult-like cell formation. The p53 protein is usually considered protective of DNA.

"P53 is thought of as a guardian of the genome," Batista said. "Mutations that disable p53 are associated with different types of cancer. Because of this we would not consider directly trying to block p53 in these patients. But what this study provides is proof-of-concept that this pathway is involved in this response. So we now are looking for ways to block the pathway further downstream without necessarily blocking p53 directly."

Batista and Sturgeon recently received a grant from the Department of Defense to investigate these pathways. The strategy used in this study could be relevant for other bone marrow failure syndromes, such as Fanconi anemia and aplastic anemia, which also involve DNA damage accrual caused by different mutations.

Explore further: Gene mutation discovered in blood disorder

More information: Fok WC, de Oliveira Niero EL, Dege C, Brenner KA, Sturgeon CM, Batista LFZ. p53 mediates failure of human definitive hematopoiesis in dyskeratosis congenita. Stem Cell Reports. July 27, 2017.

Related Stories

Gene mutation discovered in blood disorder

September 23, 2014
An international team of scientists has identified a gene mutation that causes aplastic anemia, a serious blood disorder in which the bone marrow fails to produce normal amounts of blood cells. Studying a family in which ...

Researchers fight aplastic anemia using a therapy designed to delay ageing

February 24, 2016
Aplastic anaemia is a rare, and potentially fatal, disease of the blood, by which the bone marrow is unable to generate blood cells at the appropriate pace. Many forms of aplastic anaemia share an important link with the ...

Team creates a unique mouse model for the study of aplastic anaemia

August 29, 2012
Aplastic anaemia is characterised by a reduction in the number of the bone marrow cells that go on to form the different cell types present in blood (essentially red blood cells, white blood cells and platelets). In most ...

New test more effective at predicting survival in blood cancer patients

May 10, 2017
Technology that can detect the length of small DNA structures in cancer cells could hold the key to predicting the outcome of patients with two different types of blood cancer. The test, used in conjunction with current methods, ...

Chinese herbal treatment shows signs of effectiveness in bone marrow recovery

December 15, 2016
UCLA researchers have found that a Chinese herbal regimen called TSY-1 (Tianshengyuan-1) increased telomerase activity in normal blood cells but decreased it in cancer cells. Telomerase is an enzyme responsible for the production ...

Recommended for you

New blood test to detect liver damage in under an hour

May 24, 2018
A quick and robust blood test that can detect liver damage before symptoms appear has been designed and verified using clinical samples by a team from UCL and University of Massachusetts.

Selective neural connections can be reestablished in retina after injury, study finds

May 24, 2018
The brain's ability to form new neural connections, called neuroplasticity, is crucial to recovery from some types of brain injury, but this process is hard to study and remains poorly understood. A new study of neural circuit ...

Space-like gravity weakens biochemical signals in muscle formation

May 23, 2018
Astronauts go through many physiological changes during their time in spaceflight, including lower muscle mass and slower muscle development. Similar symptoms can occur in the muscles of people on Earth's surface, too. In ...

Eating at night, sleeping by day swiftly alters key blood proteins

May 21, 2018
Staying awake all night and sleeping all day for just a few days can disrupt levels and time of day patterns of more than 100 proteins in the blood, including those that influence blood sugar, energy metabolism, and immune ...

Hotter bodies fight infections and tumours better—researchers show how

May 21, 2018
The hotter our body temperature, the more our bodies speed up a key defence system that fights against tumours, wounds or infections, new research by a multidisciplinary team of mathematicians and biologists from the Universities ...

Deep space radiation treatment reboots brain's immune system

May 21, 2018
Planning a trip to Mars? You'll want to remember your anti-radiation pills.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.