Drug reverses memory failure caused by traumatic brain injury

July 11, 2017
Drug reverses memory failure caused by traumatic brain injury
The ISRIB drug was discovered in 2013 in the laboratory of Peter Walter, PhD. Credit: University of California, San Francisco

In an unprecedented finding, UC San Francisco scientists used an experimental drug to completely reverse severe learning and memory impairments caused by traumatic brain injury (TBI) in mice. Surprisingly, the drug fully restored the ability to learn and remember in the brain-injured mice even when the animals were first treated as much as a month after injury.

The latter results are particularly striking, as most research on and stroke has suggested that treatments must be initiated as quickly as possible to preserve normal function.

The researchers said the new study offers a promising new avenue for the treatment of TBI in humans, which affects nearly two million individuals annually in the U.S. – one every 21 seconds. In addition to causing serious cognitive deficits, which can be short-lived or permanent, TBI is also a leading risk factor for the development of Alzheimer's disease and other forms of dementia. But dozens of seemingly promising treatments have failed in clinical trials, and no approved therapies are currently available.

Two Types of Brain Injuries

The drug used in the new research, known as ISRIB (pronounced "iz-rib"), was discovered in 2013 in the laboratory of Peter Walter, PhD, professor of biochemistry and biophysics at UCSF and co-senior author of the new study, which will be published online during the week of July 10, 2017, in Proceedings of the National Academy of Sciences. ISRIB was licensed in 2015 to Calico, a company involved in understanding the biology that controls the human lifespan.

"This is extraordinarily exciting," said Walter, also a Howard Hughes Medical Institute (HHMI) investigator. "We think that ISRIB may uncover an untapped reservoir in the brain that allows damaged circuits to be repaired."

In the new research, scientists in the laboratory of co-senior author Susanna Rosi, PhD, professor of physical therapy and rehabilitation sciences and of neurological surgery at UCSF, tested whether ISRIB – which had previously been shown by Walter and colleagues to enhance memory in normal – could improve the ability to learn and form memories in mice with two different types of brain injury, each of which are known to degrade learning and memory in humans.

"In general, animals with these injuries never learn well again," said Rosi, a member of the UCSF Weill Institute for Neurosciences and director of neurocognitive research at UCSF's Brain and Spinal Injury Center, located at partner institution Zuckerberg San Francisco General Hospital. "So it's remarkable that ISRIB could restore the ability to form new memories even when we delayed giving the drug for four weeks after the injury. This has not been considered possible."

Localized brain injuries called focal contusions can affect spatial memory, which helps both mice and humans navigate through the world and complete necessary everyday tasks. Concussive brain injuries – which cause diffuse trauma to the whole brain – can degrade "working memory," a temporary storage system that is critical for reasoning and decision-making.

Restoration of Ability to Learn Persisted

To test ISRIB's potential effects after focal injury, both normal and brain-injured mice were placed in a "radial-arm water maze," in which they had to learn the location of a platform hidden under milky water in one of eight arms of the maze.

The video will load shortly
Credit: University of California, San Francisco

Mice are averse to swimming, and after a brief training period normal mice improve steadily on this task, eventually finding the platform quite quickly after being placed into the maze. But brain-injured mice continue to make errors – swimming into incorrect arms of the maze in search of the platform – with no sign of improvement, long after training.

In the new research, however, when brain-injured mice were given three injections of ISRIB beginning four weeks after injury (the injections were spaced one day apart), their performance in the maze was indistinguishable from that of normal mice, and the restoration of their ability to learn persisted for a week after the last injection.

Given ISRIB's pharmacology, Rosi said, the persistence of its effects is intriguing, and indicates that it may induce some durable change in the brain. "ISRIB's half-life is less than a day, and when the mice demonstrated intact memory ability a week after receiving it, we know there is only the most miniscule trace of the drug left in their bodies."

To test whether ISRIB could restore working memory after concussive , members of Rosi's lab used a modified Barnes maze, which resembles a tabletop perforated with 40 holes; one of these holes leads to an escape tunnel, which efficiently learn to locate.

As with the radial-arm water maze, brain-injured mice usually perform poorly on this test, but when the mice with concussive injuries received ISRIB injections – in this case, four daily injections, beginning two weeks after injury – they again performed as well as their normal counterparts.

Blocks Part of the Integrated Stress Response

ISRIB works by blocking a part of a protective cellular system known as the Integrated Stress Response, or ISR (the drug's name means "Integrated Stress Response InhiBitor"). When cells are injured or under stress from infection or a lack of nutrients, the ISR slows down translation, the process by which the genetic instructions encoded within DNA are converted into functional proteins. By binding to a central cellular player involved in translation, ISRIB allows stressed cells to ignore the ISR, with protein translation proceeding apace.

In addition to the memory experiments described in the new paper, Walter and Rosi report experiments with brain slices showing that both focal and concussive injury activate the ISR in the hippocampus, a brain region that is crucial for memory, and that the ISR remains active for 28 days after the injury. Applying ISRIB to the slices not only dampened the effects of the ISR, but restored a process known as long-term potentiation, or LTP, a persistent strengthening of neural connections that is believed to be crucial to the formation of new memories.

Walter, who has won both the Albert Lasker Basic Medical Research Award and the Shaw Prize, two of the most prestigious prizes in biomedicine, for groundbreaking work on a system closely related to the ISR, believes that ISRIB may reverse memory loss in damaged nerve cells by regaining proper control of the synthesis of proteins that are essential to LTP and other cellular bases of memory. But he and Rosi "are still in a discovery phase" in understanding ISRIB's mechanism of action, Walter said. "We are exploring. We are going into the unknown."

And as startling as the new results are, Rosi said, the drug's effectiveness must undergo many more studies before it would be a candidate for clinical trials to treat brain-injured patients, work that she and Walter are undertaking with an Innovation Award from the UCSF Weill Institute for Neurosciences, which they shared in October 2016 for their work on ISRIB and TBI.

"We need to do much more research," Rosi said, "but I have high hopes that this drug can bring back lost memory capacity to our patients who have suffered brain injuries."

Explore further: Memory-boosting chemical identified in mice

More information: Austin Chou el al., "Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury," PNAS (2017). www.pnas.org/cgi/doi/10.1073/pnas.1707661114

Carmela Sidrauski et al. Pharmacological brake-release of mRNA translation enhances cognitive memory, eLife (2013). DOI: 10.7554/eLife.00498

Related Stories

Memory-boosting chemical identified in mice

June 14, 2013
Memory improved in mice injected with a small, drug-like molecule discovered by UCSF San Francisco researchers studying how cells respond to biological stress.

Molecular mechanism underlies anxiety, autism

June 19, 2017
A calcium-dependent molecular mechanism discovered in the brain cells of mice by Weill Cornell Medicine investigators may underlie the impaired social interactions and anxiety found in neuropsychiatric disorders – including ...

Treating traumatic brain injury

January 6, 2017
After a traumatic brain injury (TBI), the brain produces an inflammatory response. This prolonged swelling is known as cerebral edema and can be fatal. Unfortunately, the only medications available just address symptoms and ...

Traumatic brain injuries leave women prone to mental health problems

April 3, 2017
Traumatic brain injuries affect the body's stress axis differently in female and male mice, according to research presented at the Endocrine Society's 99th annual meeting, ENDO 2017, in Orlando, Fla. The results could help ...

Head injuries can alter hundreds of genes and lead to serious brain diseases

March 6, 2017
Head injuries can harm hundreds of genes in the brain in a way that increases people's risk for a wide range of neurological and psychiatric disorders, UCLA life scientists report.

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
5 / 5 (1) Jul 11, 2017
Potential nootropic?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.