Researchers find genetic factors that cause muscle weakness, wasting disorder

July 11, 2017 by Doug Bennett, University of Florida

For years, the underlying process that causes a debilitating muscle disorder in infants and young children has been largely unknown. Now, a group that includes University of Florida Health genetics researchers has identified the fundamental mechanism that causes congenital myotonic dystrophy.

The researchers have also developed specialized mouse models that will allow potential drug therapies to be tested. Taken together, the findings are a crucial step in addressing a disorder that arises from abnormally expanded stretches of repeats in DNA that alter muscle and brain development. The findings are published today in the journal Genes & Development.

Researchers now have a better understanding of how the misregulation of developmental genetic "switches" in unborn children gives rise to congenital myotonic dystrophy, said Maurice Swanson, Ph.D., a professor in the UF College of Medicine's department of molecular genetics and microbiology and associate director of the UF Center for NeuroGenetics.

"The ultimate goal is to come up with ideas for treating children with this disease soon after birth to minimize the long-term effects of the disorder," Swanson said.

In addition to severe muscle weakness, congenital myotonic dystrophy patients can have respiratory problems and intellectual deficits. The disorder is estimated to affect one out of every 3,500 to 16,000 individuals.

Within cells, messenger RNA molecules receive instructions from DNA and carry out protein-building activities. Using human muscle tissue samples, the researchers found that severe RNA misprocessing is a major cause of . Specifically, they identified several abnormalities in the genetic coding process that give rise to the disease, including one that affects the way in which a single gene produces multiple proteins.

Using mouse models that mimic the disease in humans, the researchers also showed disruption of a particular protein during prenatal development results in muscle at birth. Devising mouse models that replicate the effects of congenital myotonic dystrophy is especially important because there are limitations, including limited sample availability, to studying the disease in human tissue, Swanson said.

Altogether, the results show that disrupting certain RNA processing activities before birth alters the genetic switches that are essential for tissue development. That is significant because knowing where and when congenital myotonic dystrophy arises within genes is an important first step on the road to a potential cure, Swanson said.

"This provides us important new information about where we should go next and what kinds of therapeutics might be effective against this hereditary disease," Swanson said.

Explore further: Designed proteins to treat muscular dystrophy

Related Stories

Designed proteins to treat muscular dystrophy

June 28, 2017
The cell scaffolding holds muscle fibers together and protects them from damage. Individuals who suffer from muscular dystrophy often lack essential components in this cell scaffold. As a result, their muscles lack strength ...

Researchers find genetic cause of new type of muscular dystrophy

February 9, 2017
A newly discovered mutation in the INPP5K gene, which leads to short stature, muscle weakness, intellectual disability, and cataracts, suggests a new type of congenital muscular dystrophy. The research was published in the ...

New target may slow disease progression in Duchenne muscular dystrophy

September 12, 2016
Duchenne muscular dystrophy is a chronic disease causing severe muscle degeneration that is ultimately fatal. As the disease progresses, muscle precursor cells lose the ability to create new musclar tissue, leading to faster ...

Study sheds light on underlying causes of impaired brain function in muscular dystrophy

August 8, 2012
University of Florida researchers have identified a gene responsible for brain-related symptoms of the most common form of adult-onset muscular dystrophy.

Study identifies potential drug targets for muscular dystrophy treatments

January 9, 2017
Myotonic dystrophy type I (MD1) is a common form of muscular dystrophy associated with muscle wasting, weakness, and myotonia. These symptoms are linked to the accumulation of toxic gene transcripts in muscle cells that result ...

Cancer drug shows promise in reducing toxic genetic material in myotonic dystrophy

December 10, 2015
A group of researchers has shown for the first time in cells and in a mouse model that a drug used to treat cancer can neutralize the toxic RNA that causes the prolonged muscle contractions and other symptoms of myotonic ...

Recommended for you

Natural barcodes enable better cell tracking

April 24, 2018
Each of us carries in our genomes about 10 million genetic variations called single nucleotide polymorphisms (SNPs), which represent a difference of just one letter in the genetic code. Every human's pattern of SNPs is unique ...

The role of 'extra' DNA in cancer evolution and therapy resistance

April 23, 2018
Glioblastoma (GBM) is the most common and aggressive form of brain cancer. Response to standard-of-care treatment is poor, with a two-year survival rate of only 15 percent. Research is beginning to provide a better understanding ...

Variants in non-coding DNA contribute to inherited autism risk

April 19, 2018
In recent years, researchers have firmly established that gene mutations appearing for the first time, called de novo mutations, contribute to approximately one-third of cases of autism spectrum disorder (ASD). In a new study, ...

Researchers discover link between gene variation and language

April 18, 2018
What shapes the basic features of a language?

Natural selection still at work in humans

April 18, 2018
Evolution has shaped the human race, with University of Queensland researchers finding signatures of natural selection in the genome that influence traits associated with fertility and heart function.

Gene therapy for beta-thalassemia safe, effective in people

April 18, 2018
In a powerful example of bench-to-bedside science showing how observations made in the lab can spark life-altering therapies in clinic, an international team of clinician-investigators has announced that gene therapy for ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.