Immune cells may be key to better allergy, infection therapies

July 28, 2017 by Krishna Ramanujan

By learning how a recently discovered immune cell works in the body, researchers hope to one day harness the cells to better treat allergies and infections, according to new Cornell research.

Type 1 regulatory (Tr1) are a type of regulatory immune cell that help suppress immune responses, including inflammation and tissue damage, but very few details were known about their and function.

A new study with mice and humans, published June 21 in the journal Nature Communications, describes how an enzyme called ITK plays a crucial role in the development of Tr1 cells during an immune response. The enzyme offers an entry point for researchers to manipulate the development of Tr1 cells to enhance them to treat allergies, for instance, or block their development to treat viral and bacterial infections.

"The more we understand about how these cells develop, the signals and pathways they use, the more likely we'll be able to devise approaches to manipulate them," said Avery August, professor of microbiology and immunology in Cornell's College of Veterinary Medicine and the paper's senior author. Weishan Huang, Ph.D. '13, assistant research professor of microbiology and immunology, is lead author.

Doctors employ antigen immunotherapy to treat allergies by administering a regimen that exposes a patient to increasing doses of an allergen over a period of months. Since allergies are caused by an overactive immune response to an allergen, the treatment works because Tr1 cells help suppress the immune system and lower inflammation. In the future, clinicians may want to enhance the pathway to produce more Tr1 cells, August said.

But when treating viral infections such as the flu, bacterial infections and tumors, clinicians may want to selectively block the pathway to lower the number of Tr1 cells. In experiments with mice, August and colleagues found that Tr1 cells increase when a mouse is infected with viruses or bacteria or when fighting tumors. By tempering the development of Tr1 cells, and carefully reducing their activity to suppress the immune response, patients may recover faster from certain diseases.

"This is a balance because these cells are there for a purpose, and we think their purpose is to make sure the immune system doesn't destroy and cause pathology in an immune response," August said.

The danger with flu, for example, is that at a certain point other types of immune system T cells, whose purpose is to kill , start to destroy tissue. In such cases, an overactive immune response can lead to death.

"We'd have to do experiments to find out whether we can tune the function of Tr1 cells," August said, "so we balance the beneficial aspects of the immune response with the damaging aspects of the ."

In the study, August, Huang and their colleagues bred genetically altered mice so they carried a gene that makes Tr1 cells glow green when they develop, which allows for easy tracking. They then bred another type of mouse that had fluorescent Tr1 cells and also allowed the researchers to specifically block the enzymatic activity of ITK. Using the same protocol, they created a third type of mouse that lacked ITK.

In both the mice where ITK was inhibited and the mice that lacked ITK, Tr1 cells failed to develop. Using from anonymous human volunteers, they got the same results.

In a second experiment, the researchers identified a second critical enzyme in the pathway that leads to the development of Tr1 cells. This other enzyme, called IRF4, is a transcription factor that regulates the expression of a number of genes and proved key for controlling whether Tr1 cells developed. The team also confirmed that the same pathway exists in people.

Explore further: New way found to boost immunity in fight cancer and infections

More information: Weishan Huang et al. ITK signalling via the Ras/IRF4 pathway regulates the development and function of Tr1 cells, Nature Communications (2017). DOI: 10.1038/ncomms15871

Related Stories

New way found to boost immunity in fight cancer and infections

July 19, 2017
An international research team led by Université de Montréal medical professor Christopher Rudd, director of research in immunology and cell therapy at Maisonneuve-Rosemont Hospital Research Centre, has identified a key ...

Protein proves influential to healthy immune system

March 13, 2017
Researchers have discovered that the protein Myb plays a vital role in keeping our immune system healthy, and preventing the development of immune and inflammatory diseases.

Mouse model could shed new light on immune system response to Zika virus

February 23, 2017
A new mouse model with a working immune system could be used in laboratory research to improve understanding of Zika virus infection and aid development of new treatments, according to a study published in PLOS Pathogens.

Protein that activates immune response harms body's ability to fight HIV

December 23, 2016
In findings they call counterintuitive, a team of UCLA-led researchers suggests that blocking a protein, which is crucial to initiating the immune response against viral infections, may actually help combat HIV.

Receptor suppresses the immune response in order to save it

June 29, 2016
When viruses enter the body, they activate receptors on the surface of cells that allow viruses to invade those cells. A Yale-led team has found that one of the receptors, known as AXL, actually plays an essential role in ...

Immune cells found to prevent bone marrow transplant rejection

June 27, 2014
(Medical Xpress)—Cornell researchers have identified a type of immune system cell that prevents a patient's body from attacking donor cells after a bone marrow transplant, a condition called graft-versus-host disease (GVHD).

Recommended for you

Gene transcription in virus-specific CD8 T cells differentiates chronic from resolving HCV

October 17, 2017
Massachusetts General Hospital (MGH) investigators have identified differences in gene transcription within key immune cells that may distinguish those individuals infected with the hepatitis C virus (HCV) who develop chronic ...

How cytoplasmic DNA triggers inflammation in human cells

October 17, 2017
A team led by LMU's Veit Hornung has elucidated the mechanism by which human cells induce inflammation upon detection of cytoplasmic DNA. Notably, the signal network involved differs from that used in the same context in ...

Early trials show potential for treating hay fever with grass protein fragments

October 13, 2017
Protein fragments taken from grass can help protect hay fever patients from allergic reactions to pollen grains.

Researchers find mechanism for precise targeting of the immune response

October 13, 2017
The immune system checks the health of cells by examining a kind of molecular passport. Sometimes, cells present the wrong passport, which can lead to autoimmune diseases, chronic inflammations or cancer. Scientists of the ...

Enzyme behind immune cell response revealed

October 12, 2017
Monash University researchers have revealed the role played by an enzyme that is pivotal to the process of clearing infection in the body. Moreover, they suggest that the enzyme may be a potential target for drug development ...

Calcium lets T cells use sugar to multiply and fight infection

October 11, 2017
A calcium signal controls whether immune cells can use the nutrients needed to fuel their multiplication into a cellular army designed to fight invading viruses.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.