How dietary fiber helps the intestines maintain health

August 10, 2017, UC Davis
Credit: CC0 Public Domain

UC Davis Health researchers have discovered how by-products of the digestion of dietary fiber by gut microbes act as the right fuel to help intestinal cells maintain gut health.

The research, published August 11 in the journal Science, is important because it identifies a potential therapeutic target for rebalancing and adds to a growing body of knowledge on the complex interplay between gut microbiota and .

An accompanying Insights / Perspectives article in the same issue of the journal describes gut microbes as "partners" in the body's defense against potential infectious agents, such as Salmonella.

"Our research suggests that one of the best approaches to maintaining gut health might be to feed the in our intestines dietary fiber, their preferred source of sustenance," said Andreas Bäumler, professor of medical microbiology and immunology at UC Davis Health and senior author of the study.

"While it is known that the gut is the site of constant turf wars between microbes, our research suggests that signals generated by beneficial microbes drive the intestinal tract to limit resources that could lead to an expansion of potentially harmful microbes," he said.

Resident metabolize indigestible dietary fiber to produce short-chain fatty acids, which signal cells lining the large bowel to maximize oxygen consumption, thereby limiting the amount of oxygen diffusing into the gut lumen (the open space within the intestine that comes into direct contact with digested food.)

"Interestingly, the beneficial gut bacteria that are able to breakdown fiber don't survive in an environment rich in oxygen, which means that our microbiota and work together to promote a virtuous cycle that maintains gut health," Mariana X. Byndloss, assistant project scientist and first author on the study.

The new research identified the host receptor peroxisome proliferator receptor gamma (PPARg) as the regulator responsible for maintaining this cycle of protection.

"When this host signaling pathway malfunctions, it leads to increased in the gut lumen," Bäumler said. "These higher oxygen levels make us more susceptible to aerobic enteric pathogens such as Salmonella or Escherichia coli, which use oxygen to edge out competing beneficial ."

Explore further: Antibiotics allow gut pathogens to 'breathe'

More information: "Microbiota-activated PPAR-γ-signaling inhibits dysbiotic Enterobacteriaceae expansion," Science (2017). science.sciencemag.org/cgi/doi … 1126/science.aam9949

Related Stories

Antibiotics allow gut pathogens to 'breathe'

May 2, 2016
Antibiotics are essential for fighting bacterial infection, but, paradoxically, they can also make the body more prone to infection and diarrhea.

Gut pathogens thrive on body's tissue-repair mechanism

September 16, 2016
Why do some foodborne bacteria make us sick? A paper published Sept. 16 in the journal Science has found that pathogens in the intestinal tract cause harm because they benefit from immune system responses designed to repair ...

Scientists identify mechanisms driving gut bacterial imbalance and inflammation

February 8, 2017
A study led by UT Southwestern Medical Center researchers has uncovered key molecular pathways behind the disruption of the gut's delicate balance of bacteria during episodes of inflammatory disease.

Diet lacking soluble fiber promotes weight gain, mouse study suggests

November 2, 2015
Eating too much high-fat, high-calorie food is considered the primary cause of obesity and obesity-related disease, including diabetes. While the excess calories consumed are a direct cause of the fat accumulation, scientists ...

Dietary fiber alters gut bacteria, supports gastrointestinal health

June 27, 2012
A University of Illinois study shows that dietary fiber promotes a shift in the gut toward different types of beneficial bacteria. And the microbes that live in the gut, scientists now believe, can support a healthy gastrointestinal ...

Changes in the diet affect epigenetics via the microbiota

November 23, 2016
You are what you eat, the old saying goes, but why is that so? Researchers have known for some time that diet affects the balance of microbes in our bodies, but how that translates into an effect on the host has not been ...

Recommended for you

Stem cell researchers develop promising technique to generate new muscle cells in lab

December 12, 2018
To help patients with muscle disorders, scientists at The University of Texas Health Science Center at Houston (UTHealth) have engineered a new stem cell line to study the conversion of stem cells into muscle. Findings appeared ...

Gut hormone increases response to food

December 12, 2018
The holiday season is a hard one for anyone watching their weight. The sights and smells of food are hard to resist. One factor in this hunger response is a hormone found in the stomach that makes us more vulnerable to tasty ...

New mouse model may speed identification of promising muscular dystrophy therapies

December 12, 2018
A Massachusetts General Hospital (MGH) research team has created a new mouse model of a common form of muscular dystrophy with the potential of rapidly distinguishing promising therapeutic drugs from those unlikely to be ...

New insight into stem cell behaviour highlights therapeutic target for cancer treatment

December 12, 2018
Research led by the University of Plymouth and Technische Universität Dresden has identified a new therapeutic target for cancer treatment and tissue regeneration – a protein called Prominin-1.

Study examines disruption of circadian rhythm as risk factor for diseases

December 11, 2018
USC scientists report that a novel time-keeping mechanism within liver cells that helps sustain key organ tasks can contribute to diseases when its natural rhythm is disrupted.

New light-based technology reveals how cells communicate in human disease

December 11, 2018
Scientists at the University of York have developed a new technique that uses light to understand how cells communicate in human disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.