Drug hope for acute myeloid leukemia

August 8, 2017, University of Bradford
Professor Richard Morgan, Director, Institute of Cancer Therapeutics, University of Bradford, UK. Credit: University of Bradford

A new drug that strips cancer cells of their "immortality" could help to treat patients suffering from one of the most aggressive forms of leukaemia.

The drug candidate, called HXR9, works by preventing the cancer cells from sidestepping the natural process that causes unhealthy and to die, known as apoptosis.

Researchers at the University of Bradford have found the drug could be used to treat (AML), which is responsible for 2,500 deaths in the UK and 265,000 worldwide each year.

The drug targets a particular family of genes, called HOX genes, which are involved in controlling the rapid growth of cells. In adults these are switched off but in cancer cells they can be turned back on. This helps to give the cancer cells the ability to continuously grow and divide by circumventing the normal mechanisms that trigger apoptosis - effectively making them immortal.

Professor Richard Morgan, Director of the Institute for Cancer Therapeutics at the University of Bradford who led the research, said HXR9 strips the cancer cells of this ability by turning off the HOX genes.

He said: "Acute myeloid leukaemia is a pretty intractable disease and doesn't respond to many treatments. This is a novel therapeutic target that hasn't been shown before to be effective against this form of leukaemia."

Previously, Professor Morgan and his colleagues have shown that HRX9 could potentially be used to treat solid cancer tumours like in prostate cancer. They are currently preparing for a clinical trial due to being next year, where a form of HRX9 will be given to cancer patients who have failed to respond to other types of treatment.

In the latest study, which is published in the journal Oncotarget, the researchers wanted to see if the same drug could be used to treat difficult to treat blood cancers.

They analysed from 269 AML patients and found an association between the activity of a group of HOX genes and the patient survival rate.

Professor Morgan and his team then tested HXR9 on taken from patients suffering from AML and found it caused the cancer cells to undergo a process known as necroptosis.

Necroptosis causes the cells to explode and spew their contents into the bloodstream rather than simply digesting themselves as normally occurs in apoptosis. This increases the likelihood that there will be a subsequent immune reaction against the , according to Professor Morgan.

The researchers found that when they combined HXR9 with another , a protein kinase C inhibitor called Ro31, it enhanced the reduction in growth even further.

"It could well be used in combination treatments but the initial trials will be as a single therapy," said Professor Morgan.

Explore further: New drug hope for mesothelioma

More information: Oncotarget, www.impactjournals.com/oncotar … ]=20023&path[]=63885

Related Stories

New drug hope for mesothelioma

March 14, 2016
A new drug is showing promise as a treatment for mesothelioma - one of the most lethal cancers of all.

Gene signature in ovarian cancer predicts survival and offers new drug target

June 28, 2016
A new UK study has identified a gene signature that predicts poor survival from ovarian cancer. The study also identified genes which help the cancer develop resistance to chemotherapy - offering a new route to help tackle ...

Cell mechanism discovery could lead to 'fundamental' change in leukaemia treatment

July 27, 2017
Researchers have identified a new cell mechanism that could lead to a fundamental change in the diagnosis and treatment of leukaemia.

New drug combination shows promise for resistant leukaemia

May 18, 2016
Patients with acute myeloid leukaemia (AML) can look forward to the development of new therapies following the discovery by Walter and Eliza Hall Institute researchers of a new way to kill cells that are dangerously multiplying.

Study leads to breakthrough in better understanding acute myeloid leukemia

May 23, 2017
A study led by the University of Birmingham has made a breakthrough in the understanding of how different genetic mutations cause acute myeloid leukaemia.

Researchers identify new protein linked to leukaemia growth

May 16, 2014
(Medical Xpress)—Their work has identified a protein called PIP4K2A that could be a new target in drug development.

Recommended for you

Researchers find pathways that uncover insight into development of lung cancer

August 17, 2018
Lung cancer is the leading cause of preventable cancer death. A disease of complex origin, lung cancer is usually considered to result from effects of smoking and from multiple genetic variants. One of these genetic components, ...

Scientists discover new method of diagnosing cancer with malaria protein

August 17, 2018
In a spectacular new study, researchers from the University of Copenhagen have discovered a method of diagnosing a broad range of cancers at their early stages by utilising a particular malaria protein that sticks to cancer ...

Developing an on-off switch for breast cancer treatment

August 17, 2018
T-cells play an important role in the body's immune system, and one of their tasks is to find and destroy infection. However, T-cells struggle to identify solid, cancerous tumors in the body. A current cancer therapy is using ...

Pregnant? Eating broccoli sprouts may reduce child's chances of breast cancer later in life

August 16, 2018
Researchers at the University of Alabama at Birmingham have found that a plant-based diet is more effective in preventing breast cancer later in life for the child if the mother consumed broccoli while pregnant. The 2018 ...

Three scientists share $500,000 prize for work on cancer therapy

August 15, 2018
Tumors once considered untreatable have disappeared and people previously given months to live are surviving for decades thanks to new therapies emerging from the work of three scientists chosen to receive a $500,000 medical ...

PARP inhibitor improves progression-free survival in patients with advanced breast cancers

August 15, 2018
In a randomized, Phase III trial led by researchers at The University of Texas MD Anderson Cancer Center, the PARP inhibitor talazoparib extended progression-free survival (PFS) and improved quality-of-life measures over ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.