Drug hope for acute myeloid leukemia

August 8, 2017, University of Bradford
Professor Richard Morgan, Director, Institute of Cancer Therapeutics, University of Bradford, UK. Credit: University of Bradford

A new drug that strips cancer cells of their "immortality" could help to treat patients suffering from one of the most aggressive forms of leukaemia.

The drug candidate, called HXR9, works by preventing the cancer cells from sidestepping the natural process that causes unhealthy and to die, known as apoptosis.

Researchers at the University of Bradford have found the drug could be used to treat (AML), which is responsible for 2,500 deaths in the UK and 265,000 worldwide each year.

The drug targets a particular family of genes, called HOX genes, which are involved in controlling the rapid growth of cells. In adults these are switched off but in cancer cells they can be turned back on. This helps to give the cancer cells the ability to continuously grow and divide by circumventing the normal mechanisms that trigger apoptosis - effectively making them immortal.

Professor Richard Morgan, Director of the Institute for Cancer Therapeutics at the University of Bradford who led the research, said HXR9 strips the cancer cells of this ability by turning off the HOX genes.

He said: "Acute myeloid leukaemia is a pretty intractable disease and doesn't respond to many treatments. This is a novel therapeutic target that hasn't been shown before to be effective against this form of leukaemia."

Previously, Professor Morgan and his colleagues have shown that HRX9 could potentially be used to treat solid cancer tumours like in prostate cancer. They are currently preparing for a clinical trial due to being next year, where a form of HRX9 will be given to cancer patients who have failed to respond to other types of treatment.

In the latest study, which is published in the journal Oncotarget, the researchers wanted to see if the same drug could be used to treat difficult to treat blood cancers.

They analysed from 269 AML patients and found an association between the activity of a group of HOX genes and the patient survival rate.

Professor Morgan and his team then tested HXR9 on taken from patients suffering from AML and found it caused the cancer cells to undergo a process known as necroptosis.

Necroptosis causes the cells to explode and spew their contents into the bloodstream rather than simply digesting themselves as normally occurs in apoptosis. This increases the likelihood that there will be a subsequent immune reaction against the , according to Professor Morgan.

The researchers found that when they combined HXR9 with another , a protein kinase C inhibitor called Ro31, it enhanced the reduction in growth even further.

"It could well be used in combination treatments but the initial trials will be as a single therapy," said Professor Morgan.

Explore further: New drug hope for mesothelioma

More information: Oncotarget, www.impactjournals.com/oncotar … ]=20023&path[]=63885

Related Stories

New drug hope for mesothelioma

March 14, 2016
A new drug is showing promise as a treatment for mesothelioma - one of the most lethal cancers of all.

Gene signature in ovarian cancer predicts survival and offers new drug target

June 28, 2016
A new UK study has identified a gene signature that predicts poor survival from ovarian cancer. The study also identified genes which help the cancer develop resistance to chemotherapy - offering a new route to help tackle ...

Cell mechanism discovery could lead to 'fundamental' change in leukaemia treatment

July 27, 2017
Researchers have identified a new cell mechanism that could lead to a fundamental change in the diagnosis and treatment of leukaemia.

New drug combination shows promise for resistant leukaemia

May 18, 2016
Patients with acute myeloid leukaemia (AML) can look forward to the development of new therapies following the discovery by Walter and Eliza Hall Institute researchers of a new way to kill cells that are dangerously multiplying.

Study leads to breakthrough in better understanding acute myeloid leukemia

May 23, 2017
A study led by the University of Birmingham has made a breakthrough in the understanding of how different genetic mutations cause acute myeloid leukaemia.

Researchers identify new protein linked to leukaemia growth

May 16, 2014
(Medical Xpress)—Their work has identified a protein called PIP4K2A that could be a new target in drug development.

Recommended for you

Researchers use a molecular Trojan horse to deliver chemotherapeutic drug to cancer cells

February 23, 2018
A research team at the University of California, Riverside has discovered a way for chemotherapy drug paclitaxel to target migrating, or circulating, cancer cells, which are responsible for the development of tumor metastases.

Lab-grown 'mini tumours' could personalise cancer treatment

February 23, 2018
Testing cancer drugs on miniature replicas of a patient's tumour could help doctors tailor treatment, according to new research.

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

An under-the-radar immune cell shows potential in fight against cancer

February 23, 2018
One of the rarest of immune cells, unknown to scientists a decade ago, might prove to be a potent weapon in stopping cancer from spreading in the body, according to new research from the University of British Columbia.

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018
Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.