Scientists obtain 'how to' guide for producing hair follicles

August 12, 2017 by Cristy Lytal
Two types of progenitor cells from dissociated skin -- epidermal (green) and dermal (red) -- undergo a series of morphological transitions to form reconstituted skin. Credit: Mingxing Lei/Cheng-Ming Chuong Lab

How does the skin develop follicles and eventually sprout hair? A USC-led study, published in the Proceedings of the National Academy of Sciences (PNAS), addresses this question using insights gleaned from organoids, 3D assemblies of cells possessing rudimentary skin structure and function—including the ability to grow hair.

In the study, first author Mingxing Lei, a postdoctoral scholar in the USC Stem Cell laboratory of Cheng-Ming Chuong, and an international team of scientists started with dissociated skin from a newborn . Lei then took hundreds of timelapse movies to analyze the collective cell behavior. They observed that these cells formed organoids by transitioning through six distinct phases: 1) dissociated cells; 2) aggregated cells; 3) cysts; 4) coalesced cysts; 5) layered skin; and 6) skin with follicles, which robustly produce after being transplanted onto the back of a host mouse.

In contrast, dissociated skin cells from an adult mouse only reached phase 2—aggregation—before stalling in their development and failing to produce hair.

To understand the forces at play, the scientists analyzed the molecular events and physical processes that drove successful organoid formation with newborn mouse cells.

"We used a combination of bioinformatics and molecular screenings, and the core facilities at the Health Sciences Campus have facilitated my analyses," said Lei.

At various time points, they observed increased activity in genes related to: the protein collagen; the blood sugar-regulating hormone insulin; the formation of cellular sheets; the adhesion, death or differentiation of cells; and many other processes. In addition to determining which genes were active and when, the scientists also determined where in the organoid this activity took place. Next, they blocked the activity of specific genes to confirm their roles in organoid development.

By carefully studying these developmental processes, the scientists obtained a molecular "how to" guide for driving individual skin cells to self-organize into organoids that can produce hair. They then applied this "how to" guide to the stalled organoids derived from adult mouse cells. By providing the right molecular and genetic cues in the proper sequence, they were able to stimulate these adult organoids to continue their development and eventually produce hair. In fact, the adult organoids produced 40 percent as much hair as the newborn organoids—a significant improvement.

"Normally, many aging individuals do not grow hair well, because gradually lose their regenerative ability," said Chuong, senior author, USC Stem Cell principal investigator and professor of pathology at the Keck School of Medicine of USC. "With our new findings, we are able to make adult mouse cells produce hair again. In the future, this work can inspire a strategy for stimulating hair growth in patients with conditions ranging from alopecia to baldness."

Explore further: Scientists find skin cells at the root of balding, gray hair

More information: Mingxing Lei et al, Self-organization process in newborn skin organoid formation inspires strategy to restore hair regeneration of adult cells, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1700475114

Related Stories

Scientists find skin cells at the root of balding, gray hair

May 8, 2017
UT Southwestern Medical Center researchers have identified the cells that directly give rise to hair as well as the mechanism that causes hair to turn gray – findings that could one day help identify possible treatments ...

Researchers identify 'signal' crucial to stem cell function in hair follicles

May 24, 2017
Stem cell researchers at the University of Calgary have found another piece of the puzzle behind what may contribute to hair loss and prevent wounds from healing normally.

A closer look at brain organoid development

March 10, 2017
How close to reality are brain organoids, and which molecular mechanisms underlie the remarkable self-organizing capacities of tissues? Researchers already have succeeded in growing so-called "cerebral organoids" in a dish ...

Researchers identify signals during embryonic development that control the fate of skin cells to be sweaty or hairy

December 23, 2016
(Medical Xpress)—A team of researchers with the Rockefeller University has identified the signals and timing that are involved during embryonic development controlling whether skin cells grow to be sweaty or hairy. In their ...

Recommended for you

Researchers find way to convert bad body fat into good fat

September 19, 2017
There's good fat and bad fat in our bodies. The good fat helps burn calories, while the bad fat hoards calories, contributing to weight gain and obesity. Now, new research at Washington University School of Medicine in St. ...

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

Cell-based therapy success could be boosted by new antioxidant

September 19, 2017
Cell therapies being developed to treat a range of conditions could be improved by a chemical compound that aids their survival, research suggests.

Study suggests epilepsy drug can be used to treat form of dwarfism

September 19, 2017
A drug used to treat conditions such as epilepsy has been shown in lab tests at The University of Manchester to significantly improve bone growth impaired by a form of dwarfism.

Research predicts how patients are likely to respond to DNA drugs

September 19, 2017
Research carried out by academics at Northumbria University, Newcastle could lead to improvements in treating patients with diseases caused by mutations in genes, such as cancer, cystic fibrosis and potentially up to 6,000 ...

Urine output to disease: Study sheds light on the importance of hormone quality control

September 18, 2017
The discovery of a puddle of mouse urine seems like a strange scientific "eureka" moment.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.