3-D protein structure offers insight into rapid communication by brain cells

September 13, 2017, Howard Hughes Medical Institute
3-D Protein Structure Offers Insight into Rapid Communication by Brain Cells
A complex of three proteins (shown at right in this artistic rendering) helps brain cells quickly release neurotransmitters (light green) to communicate with neighboring cells. Credit: Zhou et al./ Nature 2017

New HHMI research reveals how three proteins help brain cells synchronize the release of chemical signals. A similar interaction may play a role in how cells secrete insulin and airway mucus, too.

An intricate new three-dimensional protein structure is providing a detailed look into how brain communicate rapidly.

By visualizing how three neural proteins interact with one another, researchers have revealed how they help groups of release chemical messages at the same time.

The work describes a surprising new cooperation among the three proteins, and could offer insight into other processes where cells secrete molecules, including insulin and airway mucus. Howard Hughes Medical Institute (HHMI) Investigator Axel Brunger and colleagues report the results August 24 in the journal Nature.

When a group of neurons receives an electrical signal, the cells release chemicals called neurotransmitters nearly instantaneously – within less than one thousandth of a second. Neurons hold neurotransmitters in bubble-like structures called synaptic vesicles. These structures rest inside the end of long, thin projections that point toward neighboring cells. To free neurotransmitters from their bubbles, neurons must fuse vesicle membranes with the outer membrane of the projections. This opens the bubbles and dumps their contents into the space between cells. The then float to neighboring cells to relay a message.

Scientists knew that three proteins are involved in spitting out neurons' chemical signals. A group of proteins called SNAREs provides energy for membrane fusion. Another protein, called synaptotagmin, releases neurotransmitters when appear following an electrical signal. A third protein, complexin, prevents cells from spontaneously releasing neurotransmitters. Synaptotagmin and complexin each partner with SNARE proteins, but until now, scientists could not explain how these three components worked together.

3-D Protein Structure Offers Insight into Rapid Communication by Brain Cells
A close-up view of the three-component interaction between synaptotagmin (yellow), complexin (blue), and the SNARE complex (purple and red) in a brain cell. The curly helix of complexin nestles near a helix in a synaptotagmin protein, and is arranged so that twists of the helices align like the threads of a screw. These helices rest atop helices of the SNARE complex. Credit: Zhou et al./ Nature 2017

Brunger's team at Stanford University synthesized portions of each component, allowed them to assemble into a complex, and coaxed the complex to form crystals. Then they determined the structure of the complex by measuring how the crystals diffracted x-ray light.

The crystal structure revealed two ways that the proteins interact. The first interaction – between synaptotagmin and the SNARE proteins – is identical to one Brunger and colleagues described in a 2015 paper in Nature. A second, unexpected, interaction revealed a relationship between all three components in the larger complex.

In this three-component interaction, a curly helix of complexin nestles near a helix in a synaptotagmin , arranged so that twists of the helices align like the threads of a screw. These helices also rest atop helices of the SNARE complex.

In collaboration with HHMI Investigator Thomas Südhof, the researchers engineered mouse neurons to produce mutated synaptotagmin proteins, which weakened the attraction between the three proteins. Cells with mutated proteins, or ones that lacked complexin, lost the ability to synchronize neurotransmitter release.

Based on their observations, the researchers propose that the three-part interaction locks down the SNARE proteins, so they cannot perform the membrane fusion required for release until the right moment. Complexin pins the three proteins together, and synaptotagmin might unlock the SNARE proteins when triggered by calcium ions.

"This tripartite interaction intuitively explains the role of the three components," Brunger says. "Now we can explain the cooperation between complexin, synaptotagmin, and the SNARE complex."

There are more than 60 different SNARE proteins in mammalian cells, which, along with various forms of synaptotagmin, are involved in hormone release and other cellular processes. A similar three-part interaction involving SNARE proteins may be used for other calcium-dependent cellular release processes too, Brunger says.

Explore further: Nobel Prize winner reports new model for neurotransmitter release

More information: Qiangjun Zhou et al. The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis, Nature (2017). DOI: 10.1038/nature23484

Qiangjun Zhou et al. Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis, Nature (2015). DOI: 10.1038/nature14975

Related Stories

Nobel Prize winner reports new model for neurotransmitter release

October 10, 2013
In a Neuron article published online October 10th, recent Nobel Laureate Thomas C. Südhof challenges long-standing ideas on how neurotransmitter gets released at neuronal synapses. On October 7th, Südhof won the Nobel Prize ...

Scientists find sensor that makes synapses fast

January 17, 2017
Synapses, the connections between neurons, come in different flavors, depending on the chemical they use as transmitter. Signal transmitters, or neurotransmitters, are released at the synapse after calcium ions flow into ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.