One powerful cell makes or breaks your habits

September 6, 2017, Duke University
A highly magnified view of the striatum of a mouse brain reveals a relatively rare type of cell called the fast-spiking interneuron (purple), which is responsible for orchestrating the brain circuits that control our habits. Credit: Justin O'Hare, Duke University

Some habits are helpful, such as automatically washing your hands before a meal or driving the same route to work every day. They accomplish an important task while freeing up valuable brain space.

But other habits—like eating a cookie every day after work—seem to stick around even when the outcomes aren't so good.

Duke University neuroscientists have pinpointed a single type of neuron deep within the brain that serves as a "master controller" of habits.

The team found that boosts the activity of this influential cell, and that shutting it down with a drug is enough to break habits in sugar-seeking . Though rare, this cell exerts its control through a web of connections to more populous that are known to drive habitual behavior.

"This cell is a relatively rare cell but one that is very heavily connected to the main neurons that relay the outgoing message for this brain region," said Nicole Calakos, an associate professor of neurology and neurobiology at the Duke University Medical Center. "We find that this cell is a master controller of habitual behavior, and it appears to do this by re-orchestrating the message sent by the outgoing neurons."

The findings, published Sept. 5 in eLife, may point towards new treatments for addiction or compulsive behavior in humans.

The team got their first glimpse into the neurological underpinnings of habit in a 2016 study that explored how habits can leave enduring marks on the brain. The research was a collaborative effort between Calakos' lab and Henry Yin, an associate professor in Duke's department of psychology and neuroscience.

The team trained otherwise healthy mice to receive a tasty treat every time they pressed a lever. Many mice developed a lever-pressing habit, continuing to press the lever even when it no longer dispensed treats, and despite having had an opportunity to eat all the treats they wanted beforehand.

The team then compared the of mice who had developed a lever-pressing habit with those who hadn't. They focused on an area deep within the brain called the striatum, which contains two sets of neural pathways: a "go" pathway, which incites an action, and a "stop" pathway, which inhibits action.

They found that both the go and stop pathways were stronger in habit-driven mice. Habit formation also shifted the relative timing of the two pathways, making the go fire before the stop.

In the current study, the team wanted to understand the circuitry that coordinates these various long lasting changes in the brain. They had a hunch that a single type of rare cell in the striatum called the fast-spiking interneuron (FSI) might serve as master conductor of the widespread changes in the outgoing neurons' activity.

The FSI belongs to a class neurons responsible for relaying messages locally between other types of neurons in a particular brain region. Though FSIs make up about only one percent of the cells in the striatum, they grow long branch-like tendrils that link them up to the 95 percent of neurons that trigger the stop and go pathways.

"We were trying to put these pieces of the puzzle into a mechanism," Calakos said. "And we thought because of the way that fast-spiking interneurons are connected up to the other cells, it could be the one cell that is driving these changes in all of them. That is what we set about testing."

To test whether FSIs are truly the conductors of this cellular orchestra when it comes to habit, a graduate student in Calakos' lab, Justin O'Hare led the effort to take a closer look at the brain activity in lever-pressing mice. He found that forming a habit appeared to make the FSIs more excitable. He then gave the mice a drug that decreases the firing of FSIs, and found that the stop and go pathways reverted to their "pre-habit" brain activity patterns, and the habit behavior disappeared.

"Some harmful behaviors like compulsion and addiction in humans might involve corruption of the normally adaptive -learning mechanisms." Calakos said, "Understanding the neurological mechanisms underlying our habits may inspire new ways to treat these conditions."

"I firmly believe that to develop new therapies to help people, we need to understand how the brain normally works, and then compare it to what the 'broken' looks like," Calakos said.

Explore further: Why are habits so hard to break? Getting hooked changes the brain, scientists find

More information: Justin K O'Hare et al, Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior, eLife (2017). DOI: 10.7554/eLife.26231

Related Stories

Why are habits so hard to break? Getting hooked changes the brain, scientists find

January 21, 2016
By now, you might have discovered that taming your sweet tooth as a New Year's resolution is harder than you think.

Researchers find brain region that affects drug use habits

June 27, 2017
The human brain is nimble. It can reorganize itself to learn new things, catalog memories, and even break old habits. So, what if our brains could be taught to suppress cravings, especially the destructive impulse to use ...

Brain receptor acts as switch for OCD symptoms in mice

July 15, 2016
A single chemical receptor in the brain is responsible for a range of symptoms in mice that are reminiscent of obsessive-compulsive disorder (OCD), according to a Duke University study that appears online in the journal Biological ...

When good habits go bad: Neuroscientist seeks roots of obsessive behavior, motion disorders

February 16, 2013
Learning, memory and habits are encoded in the strength of connections between neurons in the brain, the synapses. These connections aren't meant to be fixed, they're changeable, or plastic.

Making or breaking habits: The endocannabinoids can do it

May 26, 2016
In our daily lives we constantly have to shift between habitual and goal-directed actions. For example, having to drive to a new place instead of driving home. Difficulties with stopping habits and shifting to goal-directed ...

Researchers discover neurons in the brain that weigh costs and benefits to drive formation of habits

August 20, 2015
We are creatures of habit, nearly mindlessly executing routine after routine. Some habits we feel good about; others, less so. Habits are, after all, thought to be driven by reward-seeking mechanisms that are built into the ...

Recommended for you

Doctors fail to flag concussion patients for critical follow-up

May 25, 2018
As evidence builds of more long-term effects linked to concussion, a nationwide study led by scientists at UCSF and the University of Southern California has found that more than half of the patients seen at top-level trauma ...

New parts of the brain become active after students learn physics

May 24, 2018
Parts of the brain not traditionally associated with learning science become active when people are confronted with solving physics problems, a new study shows.

Study suggests brainwave link between disparate disorders

May 24, 2018
A brainwave abnormality could be a common link between Parkinson's disease, neuropathic pain, tinnitus and depression—a link that authors of a new study suggest could lead to treatment for all four conditions.

Bursts of brain activity linked to memory reactivation

May 24, 2018
Leading theories propose that sleep presents an opportune time for important, new memories to become stabilized. And it's long been known which brain waves are produced during sleep. But in a new study, researchers set out ...

Researchers define molecular basis to explain link between a pregnant mother's nutrition and infant growth

May 24, 2018
For years, pregnant mothers have questioned their nutritional habits: "Will eating more cause my baby to be overweight?" Or, "I'm eating for two, so it won't hurt to have an extra serving, right?"

Leg exercise is critical to brain and nervous system health

May 23, 2018
Groundbreaking research shows that neurological health depends as much on signals sent by the body's large, leg muscles to the brain as it does on directives from the brain to the muscles. Published today in Frontiers in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.