Scientists discover genetic timetable of brain's aging process

September 12, 2017
brain
Credit: public domain

Brain scientists have identified a genetic programme that controls the way our brain changes throughout life.

The programme controls how and when brain genes are expressed at different times in a person's life to perform a range of functions, the study found.

Experts say the timing is so precise that they can tell the age of a person by looking at the genes that are expressed in a sample of brain tissue.

Scientists analysed existing data which measured in brain tissue samples from across the human lifespan - from development in the womb up to 78 years of age.

They found the timing of when different genes are expressed follows a strict pattern across the lifespan.

Most of the changes in gene expression in the brain were completed by middle-age, the study found.

The gene programme is delayed slightly in women compared with men, suggesting that the female brain ages more slowly than the male.

The biggest reorganisation of genes occurs during , peaking around age 26, the team found. These changes affected the same genes that are associated with schizophrenia.

The team says this could explain why people with schizophrenia do not show symptoms until young adulthood, even though the genetic changes responsible for the condition are present from birth.

The study found the genetic programme is present in mice too, although it changes more rapidly across their shorter lifespan. This suggests that the calendar of brain aging is shared between all mammals and may be millions of years old.

Researchers next plan to study how the genetic programme is controlled, which could lead to therapies that alter the course of brain aging, the scientists say.

It could also hold clues to new treatments for schizophrenia and other in young adults.

The research, published in the journal eLife, was funded by the Medical Research Council, Wellcome Trust and the European Union Seventh Framework Programme.

Professor Seth Grant, Head of the Genes to Cognition Laboratory at the University of Edinburgh, said: "The discovery of this genetic programme opens up a completely new way to understand behaviour and brain diseases throughout life."

Dr Nathan Skene, Research Scientist at the University of Edinburgh's Centre for Clinical Brain Sciences, said: "Many people believe our brain simply wears out as we age. But our study suggests that aging is strictly controlled by our ."

Explore further: Found in the developing brain: Mental health risk genes and gender differences

More information: Nathan G Skene et al, A genomic lifespan program that reorganises the young adult brain is targeted in schizophrenia, eLife (2017). DOI: 10.7554/eLife.17915

Related Stories

Found in the developing brain: Mental health risk genes and gender differences

October 26, 2011
Most genes associated with psychiatric illnesses are expressed before birth in the developing human brain, a massive study headed by Yale University researchers discovered. In addition, hundreds of genetic differences were ...

Schizophrenia genes increase chance of IQ loss

February 21, 2013
People who are at greater genetic risk of schizophrenia are more likely to see a fall in IQ as they age, even if they do not develop the condition.

Structural brain connectivity as a genetic marker for schizophrenia

November 25, 2015
Schizophrenia has been considered an illness of disrupted brain connectivity since its earliest descriptions. Several studies have suggested brain white matter is affected not only in patients with schizophrenia but also ...

Scientists chart gene expression in the brain across lifespan

October 28, 2011
The "switching on" or expression of specific genes in the human genome is what makes each human tissue and each human being unique. A new study by researchers at the Johns Hopkins Bloomberg School of Public Health, the Lieber ...

Gene study points towards therapies for common brain disorders

January 27, 2016
Scientists have pinpointed the cells that are likely to trigger common brain disorders, including Alzheimer's disease, Multiple Sclerosis and intellectual disabilities.

Genetic variant accelerates normal brain aging in older people by up to 12 years

March 15, 2017
Columbia University Medical Center (CUMC) researchers have discovered a common genetic variant that greatly impacts normal brain aging, starting at around age 65, and may modify the risk for neurodegenerative diseases. The ...

Recommended for you

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

Genetically altered mice bear some hallmarks of human bipolar behavior

September 18, 2017
Johns Hopkins researchers report they have genetically engineered mice that display many of the behavioral hallmarks of human bipolar disorder, and that the abnormal behaviors the rodents show can be reversed using well-established ...

Brain halves increase communication to compensate for aging, study finds

September 15, 2017
Increased communication between distant brain regions helps older adults compensate for the negative aspects of aging, reports a new study published this week in Human Brain Mapping.

Memory decline after head injury may be prevented by slowing brain cell growth

September 15, 2017
The excessive burst of new brain cells after a traumatic head injury that scientists have traditionally believed helped in recovery could instead lead to epileptic seizures and long-term cognitive decline, according to a ...

Research uncovers the neurons that drive thirst

September 15, 2017
What makes us thirsty? On some level, the answer is obvious: If we don't drink enough water, our bodies send us unpleasant wake-up calls in the form of dry mouths and an strong urge to consume liquid. The deeper answer, a ...

Scientists find interaction between two key proteins regulates development of neurons

September 14, 2017
Salk Institute scientists have discovered that an interaction between two key proteins helps regulate and maintain the cells that produce neurons. The work, published in Cell Stem Cell on September 14, 2017, offers insight ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.