Brain development and plasticity share similar signalling pathways

October 10, 2017

October 2017. Learning and memory are two important functions of the brain that are based on the brain's plasticity. Scientists from Goethe University Frankfurt report in the latest issue of the scientific journal Cell Reports how a trio of key molecules directs these processes. Their findings provide new leads for the therapy of Alzheimer's disease.

The is able to adapt to new situations through changing, building or reducing the contact points between nerve cells (synapses). In particular, the signal strength is regulated by constantly altering the abundance of receptors in the membrane of . This explains why it is easier to remember information that we use frequently as opposed to information that we learned years ago and did not use anymore.

Amparo Acker-Palmer's research group at the Institute of Cell Biology and Neuroscience of the Goethe University focused in their study on AMPA receptors, which are the main transmitters of the stimulating signals. Nerve in the hippocampus, the brain region responsible for learning and memory, are able to alter the number of their "switched-on" receptors by extending or retracting them like antennae thereby regulating the strength of a signal. The Frankfurt scientists now discovered that three key molecules are involved in this regulation: GRIP1, ephrinB2 and ApoER2, the latter being a receptor for the signalling molecule Reelin.

"These results are fascinating since it has been known for years that ephrinB2 as well as Reelin are essential for the development of the brain " explains Amparo Acker-Palmer. "Furthermore, earlier work in my lab has shown that there is an interaction between the Reelin signalling pathway and ephrinBs when neurons migrate during brain maturation."

Interestingly, a single mechanism can fulfill very different functions within a cell. An earlier study by Amparo Acker-Palmer's team already showed that macromolecular complexes consisting of ephrinB2 and ApoER2 regulate processes involved in neuronal migration. In the present study, the scientists selectively inhibited the interaction between the two proteins and could thereby demonstrate that these proteins, together with GRIP1, also influence in adults. When the interaction between these proteins was inhibited, neurons were unable to react to changes in the activity of their network. They also showed defects in long-term plasticity, which is the cellular basis for learning and memory.

"Both, ApoER2 and ephrinB2 molecules have been linked to the development of Alzheimer's, although the mechanisms of action are not clear yet", says Amparo Acker-Palmer. "With our research we not only discovered new interactions of key for the regulation of learning and memory but also shed light on potential new therapeutic targets for the treatment of Alzheimer's disease."

Explore further: Discovery of a new mechanism for controlling memory

More information: Sylvia Pfennig et al. GRIP1 Binds to ApoER2 and EphrinB2 to Induce Activity-Dependent AMPA Receptor Insertion at the Synapse, Cell Reports (2017). DOI: 10.1016/j.celrep.2017.09.019

Related Stories

Discovery of a new mechanism for controlling memory

September 14, 2017
Researchers in Bordeaux recently discovered a new mechanism for storing information in synapses and a means of controlling the storage process. The breakthrough moves science closer to unveiling the mystery of the molecular ...

Proteins involved in brain's connectivity are controlled by multiple checkpoints

August 31, 2017
University of Bristol scientists have found that the delivery of a group of proteins involved in the information flow between the brain's nerve cells to the synapse is much more sophisticated than previously suspected. The ...

How do neurons and blood vessels "talk" to each other?

May 12, 2015
Neurons and blood vessels often traverse the body side by side, a fact observed as early as the 16th century by the Flemish anatomist Andreas Vesalius. Only over the last ten years, however, researchers have discovered that ...

Memory is influenced by perineuronal nets

September 13, 2017
Kristian Lensjø has taken a PhD at the University of Oslo investigating the mechanisms of learning and memory. His work has contributed to the understanding of perineuronal nets.

Why cancer cells grow despite a lack of oxygen

November 25, 2014
Healthy cells reduce their growth when there is a lack of oxygen (hypoxia). This makes it even more surprising that hypoxia is a characteristic feature of malignant tumours. In two publications in the current edition of the ...

Recommended for you

Nature or nurture? Innate social behaviors in the mouse brain

October 18, 2017
Adult male mice have a simple repertoire of innate, or instinctive, social behaviors: When encountering a female, a male mouse will try to mate with it, and when encountering another male, the mouse will attack. The animals ...

Brain activity predicts crowdfunding outcomes better than self-reports

October 18, 2017
Surveys and self-reports are a time-honored way of trying to predict consumer behavior, but they have limitations. People often give socially desirable answers or they simply don't know or remember things clearly.

Navigational view of the brain thanks to powerful X-rays

October 18, 2017
If brain imaging could be compared to Google Earth, neuroscientists would already have a pretty good "satellite view" of the brain, and a great "street view" of neuron details. But navigating how the brain computes is arguably ...

'Wasabi receptor' for pain discovered in flatworms

October 18, 2017
A Northwestern University research team has discovered how scalding heat and tissue injury activate an ancient "pain" receptor in simple animals. The findings could lead to new strategies for analgesic drug design for the ...

Changing stroke definitions is causing chaos, warns professor

October 18, 2017
Proposals to change the definitions of stroke and related conditions are causing confusion and chaos in clinical practice and research, a Monash University associate professor has warned.

Brain-machine interfaces to treat neurological disease

October 18, 2017
Since the 19th century at least, humans have wondered what could be accomplished by linking our brains – smart and flexible but prone to disease and disarray – directly to technology in all its cold, hard precision. Writers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.