Brain development and plasticity share similar signalling pathways

October 10, 2017, Goethe University Frankfurt am Main

October 2017. Learning and memory are two important functions of the brain that are based on the brain's plasticity. Scientists from Goethe University Frankfurt report in the latest issue of the scientific journal Cell Reports how a trio of key molecules directs these processes. Their findings provide new leads for the therapy of Alzheimer's disease.

The is able to adapt to new situations through changing, building or reducing the contact points between nerve cells (synapses). In particular, the signal strength is regulated by constantly altering the abundance of receptors in the membrane of . This explains why it is easier to remember information that we use frequently as opposed to information that we learned years ago and did not use anymore.

Amparo Acker-Palmer's research group at the Institute of Cell Biology and Neuroscience of the Goethe University focused in their study on AMPA receptors, which are the main transmitters of the stimulating signals. Nerve in the hippocampus, the brain region responsible for learning and memory, are able to alter the number of their "switched-on" receptors by extending or retracting them like antennae thereby regulating the strength of a signal. The Frankfurt scientists now discovered that three key molecules are involved in this regulation: GRIP1, ephrinB2 and ApoER2, the latter being a receptor for the signalling molecule Reelin.

"These results are fascinating since it has been known for years that ephrinB2 as well as Reelin are essential for the development of the brain " explains Amparo Acker-Palmer. "Furthermore, earlier work in my lab has shown that there is an interaction between the Reelin signalling pathway and ephrinBs when neurons migrate during brain maturation."

Interestingly, a single mechanism can fulfill very different functions within a cell. An earlier study by Amparo Acker-Palmer's team already showed that macromolecular complexes consisting of ephrinB2 and ApoER2 regulate processes involved in neuronal migration. In the present study, the scientists selectively inhibited the interaction between the two proteins and could thereby demonstrate that these proteins, together with GRIP1, also influence in adults. When the interaction between these proteins was inhibited, neurons were unable to react to changes in the activity of their network. They also showed defects in long-term plasticity, which is the cellular basis for learning and memory.

"Both, ApoER2 and ephrinB2 molecules have been linked to the development of Alzheimer's, although the mechanisms of action are not clear yet", says Amparo Acker-Palmer. "With our research we not only discovered new interactions of key for the regulation of learning and memory but also shed light on potential new therapeutic targets for the treatment of Alzheimer's disease."

Explore further: Discovery of a new mechanism for controlling memory

More information: Sylvia Pfennig et al. GRIP1 Binds to ApoER2 and EphrinB2 to Induce Activity-Dependent AMPA Receptor Insertion at the Synapse, Cell Reports (2017). DOI: 10.1016/j.celrep.2017.09.019

Related Stories

Discovery of a new mechanism for controlling memory

September 14, 2017
Researchers in Bordeaux recently discovered a new mechanism for storing information in synapses and a means of controlling the storage process. The breakthrough moves science closer to unveiling the mystery of the molecular ...

Proteins involved in brain's connectivity are controlled by multiple checkpoints

August 31, 2017
University of Bristol scientists have found that the delivery of a group of proteins involved in the information flow between the brain's nerve cells to the synapse is much more sophisticated than previously suspected. The ...

How do neurons and blood vessels "talk" to each other?

May 12, 2015
Neurons and blood vessels often traverse the body side by side, a fact observed as early as the 16th century by the Flemish anatomist Andreas Vesalius. Only over the last ten years, however, researchers have discovered that ...

Memory is influenced by perineuronal nets

September 13, 2017
Kristian Lensj√ł has taken a PhD at the University of Oslo investigating the mechanisms of learning and memory. His work has contributed to the understanding of perineuronal nets.

Why cancer cells grow despite a lack of oxygen

November 25, 2014
Healthy cells reduce their growth when there is a lack of oxygen (hypoxia). This makes it even more surprising that hypoxia is a characteristic feature of malignant tumours. In two publications in the current edition of the ...

Recommended for you

Scientists discover how brain signals travel to drive language performance

June 21, 2018
Effective verbal communication depends on one's ability to retrieve and select the appropriate words to convey an intended meaning. For many, this process is instinctive, but for someone who has suffered a stroke or another ...

Scientists discover fundamental rule of brain plasticity

June 21, 2018
Our brains are famously flexible, or "plastic," because neurons can do new things by forging new or stronger connections with other neurons. But if some connections strengthen, neuroscientists have reasoned, neurons must ...

Researchers find mechanism behind choosing alcohol over healthy rewards

June 21, 2018
A new study links molecular changes in the brain to behaviours that are central in addiction, such as choosing a drug over alternative rewards. The researchers have developed a method in which rats learn to get an alcohol ...

Waking up is hard to do: Prefrontal cortex implicated in consciousness

June 21, 2018
Philosophers have pondered the nature of consciousness for thousands of years. In the 21st century, the debate over how the brain gives rise to our everyday experience continues to puzzle scientists. To help, researchers ...

Study on instinctive behaviour elucidates a synaptic mechanism for computing escape decisions

June 21, 2018
How does your brain decide what to do in a threatening situation? A new paper published in Nature describes a mechanism by which the brain classifies the level of a threat and decides when to escape.

'Antifreeze' molecules may stop and reverse damage from brain injuries

June 21, 2018
The key to better treatments for brain injuries and disease may lie in the molecules charged with preventing the clumping of specific proteins associated with cognitive decline and other neurological problems, researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.