Checkpoint blockade may be key for immunity to malaria

October 2, 2017, University of Iowa
Credit: CC0 Public Domain

A molecule that prevents the immune system from attacking cancer may play a similar role with malaria. A new study by researchers at the University of Iowa Carver College of Medicine shows that targeting the molecule at the right time during infection allows mice to quickly clear malaria. Importantly the treated mice also develop lasting immunity to malaria.

The molecule is a checkpoint protein called anti-cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4). In cancer, CTLA-4 is a target for new immunotherapy drugs that prevent cancer from supressing the immune system. In the new study, published in Nature Medicine, the UI researchers show that CTLA-4 is expressed and released by a subset of called regulatory T (Tregs) that are involved in immune suppression.

"People have long known that malaria is associated with a huge immunosupressive response, but no one knew the mechanism," say Samarchith (Sam) Kurup, PhD, a UI assistant research scientist and first author on the study.

"The CTLA-4 molecule interferes with appropriate immune activation," explains John Harty, PhD, UI professor of microbiology and immunology and senior study author. "Specifically, it interferes with the function of several types of T helper cells whose job it is to drive immune responses against malaria."

Malaria is a serious, life-threatening disease across most of the developing world. There are 200 million cases of malaria each year and almost 500,000 malaria-related deaths. The , which is transmitted by mosquito bites, persists in the blood for long periods. Critically, although there are drugs that can cure the infection, humans do not develop immunity to infection, which means a person can get reinfected with malaria year after year. Multiple infections eventually make a person resistant to the severity of the disease symptom, but when the person - usually a young child - experiences their first few infections, the disease can be deadly.

Malaria meddles with immune responses

In most infectious diseases, a group of immune cells called T helper cells increases in number, cooperates with B cells to make antibodies that clear the infection, then leaves behind memory T and B cells to defend against reinfection with the same pathogen.

That doesn't happen in malaria. Instead, there is a period where the T helper cell expansion stalls. During that critical time period, the UI reseachers showed that the Treg population increases.

"Our observation that the Tregs went up when the T helper cells stopped going up showed a timing relationship that suggested the possibility of a functional relationship," says Harty, who also is a UI professor of pathology.

When the UI team eliminated Treg cells in mice with blood-stage malaria infections, the expansion of the T helper cells did not plateau; they kept expanding and cleared the infection faster.

Further experiments revealed that Tregs suppress the normal by continuously expressing and shedding the CTLA-4 molecule, which interferes with the normal immune function of T helper cells. It also interferes with another set of T helper cells (follicular T ) whose job it is to help make antibodies against malaria.

Malaria prevents the host body (human or mouse) from developing lasting immunity. A new University of Iowa study, led by microbiology professor John Harty, has homed in on a potential culprit of this immunosuppression. The molecule, CTLA-4, is produced by a type of immune cell called a Treg cell. Blocking CTLA-4 at the right time during blood-stage infection allows mice to quickly clear malaria. Importantly the treated mice also develop lasting immunity to malaria.The video, captured with intravital confocal immunofluorescence microscopy, shows Treg cells (green) delivering CTLA-4 to B cell (blue/ magenta)-Helper T cell (red) clusters in the spleen of a mouse. The CTLA-4 molecule inhibits efficient production of antibodies against malaria.If this pathway works in humans as it does in mice, blocking CTLA-4 might be a way to improve malaria treatment and boost immunity to reinfection. The study was published Sept. 11 online in Nature Medicine. Credit: Samarchith Kurup/ Scott Anthony, dept. of Microbiology and Immunology, University of Iowa.

"Tregs meddle with these processes through the CTLA-4 molecule," Harty says.

Blocking CTLA-4 at the right time during blood-stage infection cured mice of the infection and promoted immunity against reinfections. It even provided protection against challenge from another deadlier malaria parasite.

Previous work in Harty's lab found that blocking a different checkpoint protein called PDL1 at a later point in malaria infection also improved the host immune response to malaria. The new work shows that the CTLA-4 pathway is in play at an earlier stage in malaria infection, and shows that the two pathways don't overlap.

"Both pathways impede the appropriate activation of the immune system, but in different ways, targeting different interactions, and at different time points," Harty says. "The more we understand how and when these pathways are operating, the better chance we have to rescue them."

Of mice and men

Harty and Kurup are quick to point out that findings in mice often do not translate easily to human patients, but access to unique human data may help determine if the CTLA-4 findings are relevant in humans.

For about a decade, Harty has collaborated with Peter Crompton, an National Institutes of Health (NIH) scientist who works with malaria patients in the African country of Mali. The clinic where Crompton's colleagues work tracks around 700 children year after year. During each wet season, when malaria is endemic, children are diagnosed and treated for malaria, and the team collects blood samples for immunological studies.

"This has been a very potent resource for us," Harty says. "When we look at blood samples from the same timeframe that we investigated in the mouse, we see some of the same immune changes (expansion of Tregs and upregulation of CTLA-4) are also happening in humans. That does not prove that everything is the same, but at the level of resolution that we have, there is some reasonable similarity."

"Practically, we have shown there is a pathway that can be targeted, and although CTLA-4 blockers that are available as cancer immunotherapies are too costly and impractical to use for malaria, there may be other parts of this immunological pathway that could be targeted using other drugs or small molecules, to produce the same effect," Kurup says.

The parasite is adept at developing resistance to antimalarial medicines that target it directly, as has happened time and time again. The UI approach focuses on modulating or improving the immune response of the host.

"The parasite can't become resistant to that," Harty says.

Explore further: Researchers use new finding to clear bloodstream malaria infection in mice

More information: Samarchith P Kurup et al, Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4, Nature Medicine (2017). DOI: 10.1038/nm.4395

Related Stories

Researchers use new finding to clear bloodstream malaria infection in mice

December 12, 2011
University of Iowa researchers and colleagues have discovered how malaria manipulates the immune system to allow the parasite to persist in the bloodstream. By rescuing this immune system pathway, the research team was able ...

Why some people may not respond to the malaria vaccine

December 20, 2016
Generating protective immunity against the early liver stage of malaria infection is feasible but has been difficult to achieve in regions with high rates of malaria infection. Researchers at the University of Washington ...

'Self-sabotage' prevents immune protection against malaria

December 24, 2015
Australian scientists have for the first time revealed how malaria parasites cause an inflammatory reaction that sabotages our body's ability to protect itself against the disease.

New strategy for vaccinating pregnant mothers against malaria holds promise for protecting infants

September 5, 2017
A mother and infant in Malawi have the same repertoire of antibodies to Plasmodium falciparum, the malaria parasite. That suggests that boosting the mother's immune response to malaria, as via vaccination, will result in ...

Researchers discover key to long-lasting malaria immunity and potential vaccine targets

November 7, 2016
Houston Methodist researchers have discovered a set of immune proteins that facilitate long-lasting immunity against malaria. In a study recently published in Immunity (online Oct. 25), researchers reported that elevated ...

Scientists solve mystery of immune cells in the liver

March 20, 2017
In a discovery that could aid malaria vaccine research, scientists led by The Australian National University (ANU) have tracked immune cells and discovered a key molecule that helps them to find and kill microbes that infect ...

Recommended for you

Past encounters with the flu shape vaccine response

February 20, 2018
New research on why the influenza vaccine was only modestly effective in recent years shows that immune history with the flu influences a person's response to the vaccine.

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

Study suggests expanded range for emerging tick-borne disease

February 16, 2018
Human cases of Borrelia miyamotoi, a tick-borne infection with some similarities to Lyme disease, were discovered in the eastern United States less than a decade ago. Now new research led by the Yale School of Public Health ...

Expanding Hepatitis C testing to all adults is cost-effective and improves outcomes

February 16, 2018
According to a new study, screening all adults for hepatitis C (HCV) is a cost-effective way to improve clinical outcomes of HCV and identify more infected people compared to current recommendations. Using a simulation model, ...

Flu shot only 36 percent effective, making bad year worse (Update)

February 15, 2018
The flu vaccine is doing a poor job protecting older Americans and others against the bug that's causing most illnesses.

IFN-mediated immunity to influenza A virus infection influenced by RIPK3 protein

February 15, 2018
Each year, influenza kills half a million people globally with the elderly and very young most often the victims. In fact, the Centers for Disease Control and Prevention reported 37 children have died in the United States ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.