Researchers find factor that delays wound healing

October 17, 2017 by Mike Addelman, University of Manchester

New research carried out at The University of Manchester has identified a bacterium—normally present on the skin that causes poor wound healing in certain conditions.

Pseudomonas aeruginosa and its variants are associated with delays in .

Damage to a receptor that allows the body to recognise the is associated with a change in the balance of the community of bacteria present normally on the skin. And according to Dr Sheena Cruickshank, the shift in balance has an enormous impact on the ability of the wound to heal.

The study was carried out at Manchester and co-led by Dr Cruickshank and Dr Matthew Hardman, who is now at now at The University of Hull. The bacterium has previously been associated with wound infections, and such infection is a major complication of that fail to heal. At least one in 10 people will develop a wound that heals poorly.

The research, published in the Journal of Investigative Dermatology and funded by the Medical Research Council, casts new light on why one in 10 people will develop a which does not heal well.

The research was carried out using mice that were previously shown to heal poorly. The mice lack the receptor Nod2 that recognises bacterial components and has been shown to help regulate the host response to bacteria. The team found that mice lacking Nod2 had more Pseudomonas aeruginosa than , which is associated with delayed wound healing.

The bacteria also caused normal mice to heal poorly. The team says the findings are also applicable to humans as Pseudomonas aeruginosa is associated with that heal poorly in people. Dr Cruickshank said, "There is an urgent need to understand the bacterial communities in our skin and why so many of us will develop wounds that do not heal.

"Wounds can be caused by a multitude of factors from trauma to bed sores, but infection is a complication that can, on occasion, lead to life-threatening illness. Many people are struggling with wounds that heal poorly, but this new study suggests that the types of bacteria present may be responsible for our failure to heal, which is important for considering how we manage wound treatment."

Explore further: Bacteria on the skin: New insights on our invisible companions

More information: Helen Williams et al. Cutaneous Nod2 Expression Regulates the Skin Microbiome and Wound Healing in a Murine Model, Journal of Investigative Dermatology (2017). DOI: 10.1016/j.jid.2017.05.029

Related Stories

Bacteria on the skin: New insights on our invisible companions

April 29, 2014
(Medical Xpress)—A University of Manchester study examines how skin-dwelling bacteria influence wound healing - findings could help address chronic wounds, a common ailment in the elderly.

New study finds chronic wound patients who never receive opioids heal faster

November 21, 2016
Patients with chronic wounds who never receive opioids heal faster than those who do receive the drugs, according to a new study by George Washington University (GW) researcher Victoria Shanmugam, M.D.

Mathematical models for healing burns

June 15, 2017
Daniël Koppenol, together with Fred Vermolen (both TU Delft), has developed various mathematical models to simulate the healing of wounds, in particular burns, with the aim of improving healing. As Vermolen points out, collaboration ...

Understanding aspirin's effect on wound healing offers hope for treating chronic wounds

May 12, 2014
In addition to its known capacity to promote bleeding events, aspirin also inhibits wound healing. New research published in The Journal of Experimental Medicine now describes how aspirin acts on key skin cells called keratinocytes, ...

Reducing inflammation protects stem cells during wound repair

July 20, 2017
Scientists have found a new way to protect stem cells from harsh inflammation during wound repair. In a study recently published in the journal Cytotherapy, researchers in India discovered that treating mice with a common ...

UVC light kills wound bacteria

July 23, 2012
Ultraviolet (UVC) light can eradicate wound-infecting bacteria on mice increasing both survival and healing rates, according to a paper in the July 2012 issue of Antimicrobial Agents and Chemotherapy. The light did not damage ...

Recommended for you

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

Researchers create a functional salivary gland organoid

October 11, 2018
A research group led by scientists from Showa University and the RIKEN Center for Biosystems Dynamics Research in Japan have, for the first time, succeeded in growing three-dimensional salivary gland tissue that, when implanted ...

Lassa fever vaccine shows promise and reveals new test for immunity

October 11, 2018
Lassa fever belongs to the same class of hemorrhagic fevers as Ebola. Like Ebola, it has been a major health threat in Western Africa, infecting 100,000-300,000 people and killing 5,000 per year. A new vaccine against both ...

Genetically engineered 3-D human muscle transplant in a murine model

October 10, 2018
A growing need for tissues and organs in surgical reconstruction is addressed by the promising field of tissue engineering. For instance, muscle atrophy results from severe traumatic events including deep burns and cancer, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.