Editing false positives from cancer dependency maps drawn with CRISPR

October 31, 2017 by Tom Ulrich, Broad Institute of MIT and Harvard
Editing false positives from cancer dependency maps drawn with CRISPR
Credit : Lauren Solomon, Broad Communications. Adapted from Meyers RM, Bryan JG, et al. Nature Genetics 2017.

The Broad Cancer Dependency Map team adds CRISPR-based data from 342 cancer cell lines to their growing catalog of genetic dependencies in cancer, and a new method for ensuring that data's accuracy.

Genome-scale CRISPR-based knockout screens are powerful tools for pinpointing ' genetic dependencies—that is, genes that cells require for their survival and/or proliferation. However, such CRISPR screens are sensitive to a phenomenon called the copy number effect, where genes that have been repeatedly duplicated within a cell (as commonly happens in ) can be flagged as essential regardless of whether they are or not.

To limit such false-positive hits, the Broad Institute's Cancer Dependency Map project—a joint effort bringing together researchers from the Broad Cancer Program's Project Achilles and Cancer Data Science teams, the institute's Genetic Perturbation Platform, and other Broad groups—has developed CERES, a computational method that corrects pooled CRISPR screen data for the copy number effect and provides an unbiased view of cells' genetic dependencies.

As they revealed in Nature Genetics, the team benchmarked CERES against genome-scale CRISPR-Cas9 data from 342 cancer cell lines (the largest CRISPR knockout dataset generated in cancer lines to date) curated by the Broad-Novartis Cancer Cell Line Encyclopedia (CCLE). The method greatly reduced false-positive readouts in the data, pinpointing known dependencies (e.g., KRAS mutations) and allowing new dependencies to become apparent.

The new dependency data complement the Dependency Map team's ongoing efforts to use functional genomic technologies like CRISPR and RNA interference (RNAi) to locate vulnerabilities that arise within cancer cells as they compensate for the loss of critical genes due to mutations or expression changes. Earlier this year the team announced that they had cataloged 769 strong genetic dependencies across 501 CCLE-curated cell lines using genome-scale RNAi screens—the fruits of a nearly 10-year effort.

CERES joins two prior computational methods the team has developed to filter false-positive results from functional genomic screen data: ATARiS and DEMETER, both of which weed out so-called seed effects that commonly plague RNAi data.

Explore further: Researchers release first draft of a genome-wide cancer 'dependency map'

More information: Robin M Meyers et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells, Nature Genetics (2017). DOI: 10.1038/ng.3984

Related Stories

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Editing genes one by one throughout colorectal cancer cell genome uncovers new drug target

September 27, 2017
Cancers driven by mutations in the KRAS gene are among the most deadly. For decades, researchers have tried unsuccessfully to directly target mutant KRAS proteins as a means to treat tumors. Instead of targeting mutant KRAS ...

Cancer gene map uncovers potential new treatment targets

July 31, 2017
Researchers in the US have created a comprehensive map of genes that tumour cells rely on to survive.

Researchers identify genetic drivers of most common form of lymphoma

October 5, 2017
Lymphoma is the most common blood cancer, but the diagnosis belies a wildly diverse and little understood genetic foundation for the disease that hampers successful treatment.

Map of oncogenic dependencies for the design of personalized therapeutic approaches

August 14, 2017
Being able to predict the resistance or sensitivity of a tumour cell to a drug is a key success factor of cancer precision therapy. But such a prediction is made difficult by the fact that genetic alterations in tumours change ...

Recommended for you

DICE: Immune cell atlas goes live

November 15, 2018
Compare any two people's DNA and you will find millions of points where their genetic codes differ. Now, scientists at La Jolla Institute for Immunology (LJI) are sharing a trove of data that will be critical for deciphering ...

Ashkenazi Jewish founder mutation identified for Leigh Syndrome

November 15, 2018
Over 30 years ago, Marsha and Allen Barnett lost their sons to a puzzling childhood disease that relentlessly attacked their nervous systems and sapped their energy. After five-year-old Chuckie died suddenly in 1981, doctors ...

Drug candidate may recover vocal abilities lost to ADNP syndrome

November 15, 2018
Activity-dependent neuroprotective protein syndrome (ADNP syndrome) is a rare genetic condition that causes developmental delays, intellectual disability and autism spectrum disorder symptoms in thousands of children worldwide. ...

The puzzle of a mutated gene lurking behind many Parkinson's cases

November 15, 2018
Genetic mutations affecting a single gene play an outsized role in Parkinson's disease. The mutations are generally responsible for the mass die-off of a set of dopamine-secreting, or dopaminergic, nerve cells in the brain ...

Gene mutation found to cause macrocephaly and intellectual deficits

November 13, 2018
The absence of one copy of a single gene in the brain causes a rare, as-yet-unnamed neurological disorder, according to new research that builds on decades of work by a University at Buffalo biochemist and his colleagues.

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.