Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

October 23, 2017, Dresden University of Technology
The main steps to obtain a highly pure adult zebrafish spinal oligodendrocyte progenitor cell (OPC) population. Credit: Kroehne, Tsata, Marrone, Froeb, Reinhardt, Gompf, Dahl, Sterneckert and Reimer

Spinal cord injuries result from a blunt or penetrating trauma. This is generally caused by accidents that occur during sport activities or when driving. Injuries of the spinal cord can lead to extreme pain (e.g. pressure in the head, neck or back), the loss of sensation (e.g. in fingers or feet), the loss of control over different parts of the body, an abnormal sense of balance and many other symptoms. According to the World Health Organization (WHO), as many as 500,000 people suffer from spinal cord injuries each year. Humans do not regain spinal cord function after injury. However, zebrafish have the remarkable ability to functionally recover from spinal cord injury. They repair injured connections, replace damaged motor neurons and oligodendrocytes, enabling them to regain full movement within six weeks after injury.

The study introduced here focused on a population of support cells in the that helps to protect surviving nerve cells (neurons) after injury: oligodendrocytes and their precursor cells. Oligodendrocytes, the cells that are known to produce the myelin sheaths which enable saltatory conduction of action potentials along the myelinated axons, are modulators of signal transmission along neuronal connections (axons) and also promote neuronal survival by providing metabolic support. Oligodendrocyte death, occurring after a spinal cord injury, activates a process called de-myelination that results first in damage to surviving neuronal connections and finally in death of the affected neurons. Although lost mature oligodendrocytes can principally be replaced by resident (OPCs) this does not happen sufficiently enough in the human spinal cord after injury. Improving recruitment, activation and differentiation of OPCs is therefore hypothesised to improve functional outcome after a spinal cord injury in humans.

Here Dr. Reimer and his team asked the question, 'what happens to mature oligodendrocytes after a spinal cord injury in adult ?'. They found that, like in humans, oligodendrocytes near a spinal cord injury site are massively lost within a week. However, two weeks after injury they found that the population was largely re-established, showing the remarkable regenerative capacity of the adult zebrafish spinal cord. These results placed the resident OPC population in the focus of interest: what are the signals that control and enable the activation of these in the adult zebrafish spinal cord? Dr. Reimer and his team decided to establish a novel in vitro platform to analyse zebrafish OPCs independently of the body, as this enables better control over the cells and opens up the possibility for novel methods of analysis. They developed a streamlined and fast, though inexpensive, method that allows direct access to a pure and vital population of zebrafish OPCs in less than 2 hours. This simple protocol is based on automated fluorescent activated cell sorting (FACS) of OPCs. Using novel culture conditions Dr. Reimer's team has shown it is now possible to maintain the cells for 16 days in vitro. Finally, they demonstrated that zebrafish OPCs differentiate into mature oligodendrocytes when cultured together with human , differentiated from induced pluripotent stem . This shows that the basic mechanisms of oligodendrocyte differentiation are conserved across species and that understanding the regulation of zebrafish OPCs can contribute to the development of new treatment for human diseases.

As a next step, Dr. Reimer's research team intend to analyse the effect of different drugs on zebrafish OPCs in order to potentially identify a method to improve functional spinal cord repair in humans.

Explore further: Zebrafish study reveals clues to healing spinal cord injuries

More information: Volker Kroehne et al, Primary Spinal OPC Culture System from Adult Zebrafish to Study Oligodendrocyte Differentiation In Vitro, Frontiers in Cellular Neuroscience (2017). DOI: 10.3389/fncel.2017.00284

Related Stories

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Using donor stem cells to treat spinal cord injury

August 28, 2017
A new study in mice published in The Journal of Neuroscience details a potential therapeutic strategy that uses stem cells to promote recovery of motor activity after spinal cord injury.

Zebrafish study offers insights into nerve cell repair mechanisms

October 22, 2015
Tropical fish may hold clues that could aid research into motor neuron disease and paralysis caused by spinal cord injury.

Potential target for restoring ejaculation in men with spinal cord injuries or ejaculatory disorders

December 5, 2016
New research provides insights on how to restore the ability to ejaculate in men who are not able to do so.

Neural stem cell therapies could eventually play a role in treating spinal cord injuries

May 4, 2017
Researchers in Qatar and Egypt, working with colleagues in Italy and the US, have found that injured spinal cords in rats show signs of tissue regeneration several weeks following injection with neural stem cells.

Recommended for you

Cell study reveals how head injuries lead to serious brain diseases

November 16, 2018
UCLA biologists have discovered how head injuries adversely affect individual cells and genes that can lead to serious brain disorders. The life scientists provide the first cell "atlas" of the hippocampus—the part of the ...

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.