New study reveals breast cancer cells recycle their own ammonia waste as fuel

October 19, 2017, Harvard Medical School
Micrograph showing a lymph node invaded by ductal breast carcinoma, with extension of the tumour beyond the lymph node. Credit: Nephron/Wikipedia

Breast cancer cells recycle ammonia, a waste byproduct of cell metabolism, and use it as a source of nitrogen to fuel tumor growth, report scientists from Harvard Medical School in the journal Science.

The findings, published online ahead of print on Oct. 12, show that the presence of accelerates proliferation of cultured , while suppressing ammonia metabolism can stunt growth in mice.

The insights shed light on the biological role of ammonia in and may inform the design of new therapeutic strategies to slow tumor growth, the researchers said.

"Classically, ammonia was thought to be metabolic waste that must be cleared due to its high toxicity," said senior study author Marcia Haigis, associate professor of cell biology at HMS. "We found that not only was ammonia not toxic for breast cancer , it could be used to feed tumors by serving as a source for the building blocks that tumors need to grow."

Rapidly growing cells, particularly cancer cells, consume nutrients voraciously and generate excess metabolic waste. One such byproduct, ammonia, is normally transported in blood vessels to the liver, where it is converted into less toxic substances and excreted from the body as urea. Tumors, however, have few blood vessels, and as a result, ammonia accumulates in the tumor's local environment at concentrations that would be toxic for many cells.

Tracing Fate

To investigate how tumors cope with high levels of ammonia, Haigis and her colleagues used a technique to label the nitrogen on glutamine. When glutamine is broken down during , ammonia containing labeled nitrogen is released as a byproduct.

Tracing the fate of this marked ammonia, the researchers analyzed more than 200 different cellular metabolites in breast cancer cells and in human tumors transplanted into mice.

They found cancer cells recycled ammonia with high efficiency, incorporating it into numerous components—primarily the amino acid glutamate, a fundamental building block for proteins, as well as its derivatives. Around 20 percent of the cellular glutamate pool contained recycled nitrogen.

Higher concentrations of ammonia appeared to accelerate the growth of lab-grown breast cancer cells. Ammonia-exposed cells doubled up seven hours faster than cells grown without ammonia. In 3-D cultures—a technique that allows cells to divide in all directions as they do inside the body—ammonia exposure increased the number of cells and surface area of cell clusters by up to 50 percent compared with cells grown without ammonia.

Ammonia also accelerated tumor growth and proliferation in mice with transplanted human breast cancer. When the team blocked the activity of glutamate dehydrogenase (GDH)—an enzyme that specifically assimilates ammonia to carry out its function—tumor growth slowed significantly compared to tumors with intact GDH activity.

"We found that repressing ammonia metabolism stunts tumor in mice," said Jessica Spinelli, a graduate student in the Haigis lab and first author on the study. "Therefore, inhibition of ammonia assimilation or may be rational strategies for therapy design."

The team's findings indicate that the biological role of ammonia should be reevaluated, laying the foundation for the investigation of new approaches to block by depriving tumors of essential nutrients. The researchers are now exploring the therapeutic implications of ammonia metabolism in cancer.

Explore further: A metabolic treatment for pancreatic cancer?

More information: Jessica B. Spinelli et al, Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass, Science (2017). DOI: 10.1126/science.aam9305

Related Stories

A metabolic treatment for pancreatic cancer?

August 15, 2017
Pancreatic cancer is now the third leading cause of cancer mortality. Its incidence is increasing in parallel with the population increase in obesity, and its five-year survival rate still hovers at just 8 to 9 percent. Research ...

Ammonia's role in cardiovascular health tracked in mice, human cells

March 9, 2017
Coronary artery disease is caused by plaque buildup in the vessels that deliver blood to the heart. Narrowed or blocked coronary arteries can result in a heart attack or sudden cardiac death. A study at the University of ...

Recommended for you

New therapeutic gel shows promise against cancerous tumors

February 21, 2018
Scientists at the UNC School of Medicine and NC State have created an injectable gel-like scaffold that can hold combination chemo-immunotherapeutic drugs and deliver them locally to tumors in a sequential manner. The results ...

Five novel genetic changes linked to pancreatic cancer risk

February 21, 2018
In what is believed to be the largest pancreatic cancer genome-wide association study to date, researchers at the Johns Hopkins Kimmel Cancer Center and the National Cancer Institute, and collaborators from over 80 other ...

Kinase inhibitor larotrectinib shows durable anti-tumor abilities

February 21, 2018
Three simultaneous safety and efficacy studies of the drug larotrectinib reported an overall response rate of 75 percent for patients ages four months to 76 years with 17 different cancer diagnoses. All patients had tumors ...

Similarities found in cancer initiation in kidney, liver, stomach, pancreas

February 21, 2018
Recent research at Washington University School of Medicine in St. Louis demonstrated that mature cells in the stomach sometimes revert back to behaving like rapidly dividing stem cells. Now, the researchers have found that ...

Research could change how doctors treat leukemia and other cancers fed by fat

February 21, 2018
Obesity and cancer risk have a mysterious relationship, with obesity increasing the risk for 13 types of cancer. For some cancers—including pediatric cancers—obesity affects survival rates, which are lower for people ...

New technique predicts gene resistance to cancer treatments

February 21, 2018
Yale School of Public Health researchers have developed a new method to predict likely resistance paths to cancer therapeutics, and a methodology to apply it to one of the most frequent cancer-causing genes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.