Research finds that zinc binding is vital for regulating pH levels in the brain

October 17, 2017
Zinc and regulation of pH is linked at the atomic level through specific bicarbonate transporters. Credit: Colourbox.com/JP Morth

Researchers in Oslo, Norway, have discovered that zinc binding plays an important role in the sensing and regulation of pH in the human brain. The findings come as one of the first studies that directly link zinc binding with bicarbonate transporters.

The Morth Group, led by J. Preben Morth, recently published the findings in Scientific Reports. The group is based at the Centre for Molecular Medicine Norway, and studies the structure and function of membrane proteins, and their interaction with lipids in the biological membrane.

When we inhale, oxygen is distributed via our to every living cell of our body. Human cells use oxygen to produce Adenosine triphosphate (ATP) - the molecule that fuels vital processes in the cells, such as maintaining the electrical potential across the membranes of the cells that allow us to think and feel.

ATP generation is directly linked to the citric acid cycle, which leads to the complete breakdown of nutrients. This process ultimately generates carbon dioxide (CO2) as the final waste product, which is expelled when we exhale.

However, before we can exhale the excess CO2, this vital molecule is involved in one of the most important biological functions on our body: it regulates pH in our cells. This process is incredibly important; if the pH in and around our is lower than 6.8 or higher than 7.8, then we are in danger of dying due to cell death and tissue damage.

An example of how important pH levels are to our health is demonstrated by the fact that pH levels in blood from the umbilical cord are always tested in newborn babies. A low pH value is correlated with a low oxygen supply during birth, which can lead to severe damage.

When in water, CO2 forms bicarbonate (HCO3-) and is transported by specific transport proteins across the cell membrane. How these transport molecules sense what the pH value is inside the cell is still an open question. However, the work performed by Alvadia et al.describes that the transition metal, , likely interacts with the proteins that facilitate the transport of HCO3- through the .

This zinc binding therefore plays an important role in the sensing and regulation of cellular pH, in particular in the transporters found in neurons of the . This is one of the first studies that directly associates zinc binding with a bicarbonate transporters.

Preben Morth, Group Leader at NCMM comments, "This is a basic research project and at this stage it is difficult to predict what the medical consequences will be. However, it is likely that zinc may play a key role in the regulation of pH in the brain and therefore has implications for brain function and health."

The results have recently been published in Scientific Reports from the Nature publishing group.

Explore further: Zinc transporter key to fighting pancreatic cancer and more

More information: Carolina M. Alvadia et al. The crystal structure of the regulatory domain of the human sodium-driven chloride/bicarbonate exchanger, Scientific Reports (2017). DOI: 10.1038/s41598-017-12409-0

Related Stories

Zinc transporter key to fighting pancreatic cancer and more

September 6, 2017
When trace elements rise to toxic levels, bad things happen.

Zinc control could be path to breast cancer treatment

February 6, 2012
The body's control mechanisms for delivering zinc to cells could be key to improving treatment for some types of aggressive breast cancer.

Recommended for you

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.