Cancer drug starts clinical trials in human brain-cancer patients

November 27, 2017, University of Illinois at Urbana-Champaign
Pretzel's brain tumor shrank more than 40 percent after treatment with PAC-1 in a clinical trial for dogs with glioma, a brain cancer very similar to glioblastoma in humans. Credit: Tim Fan

A drug that spurs cancer cells to self-destruct has been cleared for use in a clinical trial of patients with anaplastic astrocytoma, a rare malignant brain tumor, and glioblastoma multiforme, an aggressive late-stage cancer of the brain. This phase Ib trial will determine if the experimental drug PAC-1 can be used safely in combination with a standard brain-cancer chemotherapy drug, temozolomide.

The trial is approved for patients who have seen their cancer progress after first-line therapy. This is an extension of an ongoing human phase I clinical trial of PAC-1 alone in patients with various late-stage cancers. Phase I are designed to test the safety of new drugs in human patients.

PAC-1 is unusual in that it is able to cross the blood-brain barrier, a formidable obstacle to most anti-cancer drugs. The drug targets procaspase-3, an enzyme that is overexpressed in many , said University of Illinois chemistry professor Paul Hergenrother, who discovered PAC-1's anti-cancer effects more than a decade ago. After tests in human cell lines and rodents proved promising, Hergenrother and veterinary oncologist Dr. Timothy Fan, a professor of veterinary clinical medicine at Illinois, tested PAC-1 in pet with a variety of naturally occurring cancers.

"Most cancers have elevated levels of procaspase-3," Hergenrother said. "When it is turned on, procaspase-3 kills ."

Cancer cells override this normal cell-recycling pathway, however, he said.

"PAC-1 restores the activation of procaspase-3 and, because this enzyme is elevated in cancer cells, targets cancer cells over noncancerous cells," he said.

PAC-1 has been evaluated in pet dogs with naturally occurring osteosarcoma, lymphoma and, most recently, glioma - a brain cancer similar to glioblastoma in humans. One 2016 study found that the combination of PAC-1 with doxorubicin, a chemotherapeutic agent that also is used in humans, saw tumor reductions in four of four dogs with lymphoma and in three of six dogs with osteosarcoma. The trials in dogs continue and, so far, have found PAC-1 to be safe, with few observable side effects apart from occasional gastrointestinal distress. The researchers report their latest findings in rodents and in dogs with brain cancer in the journal Oncotarget.

Dogs with certain naturally occurring cancers may be better than other animal models of human cancers because mice and rats used in many cancer drug-testing models must be implanted with human cancer cells to mimic specific types of tumors, Fan said.

"This requires that the rodents be immunocompromised to mitigate rejection of human cells," he said. "As such, most rodent tumor models do not faithfully recapitulate the tumor microenvironment - in particular, the body's immune surveillance of the tumor.

"Rodent models are limited, but they are still useful," Fan said.

Certain cancers in dogs are genetically similar to those in humans and respond to the same medications. Dogs also are more similar in size to humans, and so can be better models to evaluate how well drug agents perform on larger tumor masses.

"I look at pets with spontaneous tumors as being complementary to rodent models and recognize that not all discoveries in will necessarily translate similarly to people," Fan said.

The ongoing clinical trial of PAC-1 in human patients with late-stage solid tumors and lymphoma has shown that the drug is well-tolerated at tested doses up to 450 milligrams per day, said medical oncologist Dr. Arkadiusz Dudek, who chairs an advisory board for Vanquish Oncology, which is funding the .

The extension of the phase I trial to brain-cancer patients will begin with a PAC-1 dose of 375 mg per day and will increase the dose incrementally to test its safety in combination with the standard brain-cancer chemotherapy agent, temozolomide, he said.

So far, the clinical trials of PAC-1 alone have seen no significant side effects in humans. None of the human patients in the first five dose levels of the single-agent trial has dropped out as a result of side effects, the researchers report. The team cannot report on clinical outcomes in a phase I clinical trial, since such trials are designed to measure safety, not efficacy.

Surgery is a first-line therapy for anaplastic astrocytoma, followed by treatment with temozolomide, a chemotherapy drug that is one of the few effective treatments for , Dudek said. Humans with usually undergo surgery to remove as much of the cancerous tissue as possible, followed by radiation and oral treatment with temozolomide.

It is almost impossible to find and remove all glioblastoma cells in surgery, however, Dudek said.

"Glioblastoma multiforme has this feature of spreading silently along the blood vessels inside the brain," he said. "That's a reason why most patients will unfortunately have disease coming back later on after surgery and radiation."

The median survival time for human patients with glioblastoma undergoing the standard treatment is about 15 months.

The three dogs in the glioma trial received daily oral doses of PAC-1 in combination with temozolomide and "curative-intent" radiation.

Temozolomide is normally too expensive to use in canine patients, Fan said. The dogs tolerated the combination treatment very well and responded well to the therapy, he said.

"All three dogs had, at the very least, what we call a partial response, which means more than a 30 percent reduction in the tumor," he said. "And one of the dogs had a complete response, as identified with serial MRI scans, with a 100 percent reduction in the mass 84 days after combination therapy."

Fan said a much larger study in dogs would be needed to determine whether the therapeutic effects were consistent and reproducible, and to quantify how much PAC-1 contributed to the positive results.

Vanquish Oncology, a drug-development startup company Hergenrother helped found in 2011, has licensed the technology from the University of Illinois and is focused on moving PAC-1 into the clinic. As with any investigational agent, determining the true safety and efficacy profile of PAC-1 will take several years of human clinical trials.

Explore further: Cancer drug first tested in pet dogs begins human trials

More information: Avadhut D. Joshi et al, Synergistic and targeted therapy with a procaspase-3 activator and temozolomide extends survival in glioma rodent models and is feasible for the treatment of canine malignant glioma patients, Oncotarget (2017). DOI: 10.18632/oncotarget.19085

Related Stories

Cancer drug first tested in pet dogs begins human trials

February 26, 2015
A new drug that prompts cancer cells to self-destruct while sparing healthy cells is now entering phase I clinical trials in humans. The drug, called PAC-1, first showed promise in the treatment of pet dogs with spontaneously ...

Human trials of cancer drug PAC-1 continue with new investment

May 24, 2016
Clinical trials of the anti-cancer agent PAC-1 are continuing to expand, thanks to a $7 million angel investment from an anonymous contributor who originally invested $4 million to help get the compound this far in the drug-approval ...

Cancer drug tested in pet dogs is now bound for human trials

July 17, 2013
Thanks to a new $2 million investment, a drug that spurs cancer cells to self-destruct while sparing healthy cells is on the road to human clinical trials. The compound, known as PAC-1, has so far proven safe and has promising ...

Onalespib could be an effective treatment for glioblastoma, preclinical studies show

November 2, 2017
The targeted therapy onalespib has shown effectiveness in preclinical studies of glioblastoma by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove ...

Scientists exploit leaks in blood brain barrier to treat glioblastoma

November 6, 2017
An ovarian cancer drug can leak through the blood brain barrier to reach brain tumours and could be an effective treatment for glioblastoma, suggest results presented at the National Cancer Research Institute's (NCRI) Cancer ...

New chimeric antibody that suppresses malignant cancers in dogs

August 25, 2017
Similar to humans, dogs live longer than before and an increasing number of them die from cancer. As seen in humans, dogs have malignant cancers that cannot be treated by existing therapies such as surgery, radiotherapy and ...

Recommended for you

In zebrafish, a way to find new cancer therapies, targeting tumor modulators

September 21, 2018
The lab of Leonard Zon, MD, at Boston Children's Hospital has long been interested in making blood stem cells in quantity for therapeutic purposes. Looking for a way to test for their presence in zebrafish, their go-to research ...

What can salad dressing tell us about cancer? Think oil and vinegar

September 20, 2018
Researchers led by St. Jude Children's Research Hospital scientists have identified another way the process that causes oil to form droplets in water may contribute to solid tumors, such as prostate and breast cancer. The ...

Novel biomarker found in ovarian cancer patients can predict response to therapy

September 20, 2018
Despite months of aggressive treatment involving surgery and chemotherapy, about 85 percent of women with high-grade wide-spread ovarian cancer will have a recurrence of their disease. This leads to further treatment, but ...

Testing fluorescent tracers used to help surgeons determine edges of breast cancer tumors

September 20, 2018
A team of researchers with members from institutions in The Netherlands and China has conducted a test of fluorescent tracers meant to aid surgeons performing tumor removal in breast cancer patients. In their paper published ...

Cancer immunotherapy might benefit from previously overlooked immune players

September 20, 2018
Cancer immunotherapy—efforts to boost a patient's own immune system, allowing it to better fight cancer cells on its own—has shown great promise for some previously intractable cancers. Yet immunotherapy doesn't work ...

New way to target advanced breast cancers

September 20, 2018
A cytokine signature found in certain kinds of breast cancer cells can not only serve as a diagnostic tool for HER2-negative cancers but also offer an effective treatment target.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.