Cancer immunotherapy uses melanin against melanoma

November 10, 2017, North Carolina State University
Researchers have developed a melanin-enhanced cancer immunotherapy technique that can also serve as a vaccine, based on early experiments done in a mouse model. The technique is applied via a transdermal patch (shown here) and is made more effective by applying near infrared light. Credit: Yanqi Ye

Researchers have developed a melanin-enhanced cancer immunotherapy technique that can also serve as a vaccine, based on early experiments done in a mouse model. The technique is applied via a transdermal patch.

"Melanin is a natural pigment that can efficiently transform absorbed sunlight energy into heat," says Zhen Gu, corresponding author of a paper on the work and an associate professor in the joint biomedical engineering program at North Carolina State University and the University of North Carolina at Chapel Hill. "We demonstrated that melanin, which is found at high levels in melanoma, can actually be used to help treat melanoma. We do this by shining near infrared (IR) light on a therapeutic skin , which promotes the systemic that fights cancer."

"There are a lot of immune cells in the skin, and the fundamental concept here is to train the body's immune system to respond effectively to the presence of melanoma cells - which could both limit the likelihood of developing tumors and help the body fight off tumors that are already established," says Yanqi Ye, lead author of the work and a Ph.D. student in the joint biomedical engineering program.

The new technique starts with a lysate - a tumor puree, made up of ruptured melanoma cells. The lysate is used to fill an array of microneedles, embedded in a polymeric transdermal patch. By itself, the lysate is inactive and harmless. But when the patch is applied to the skin, the largest immune organ of the body, the immune system knows that, whatever the lysate is, it shouldn't be there. This triggers an immune response, and that response allows the immune system to "remember" the melanoma lysate, improving its response time and efficiency should it encounter melanoma again.

An infographic on the prevalence of melanoma and the study’s key findings. Credit: Carla Schaffer / AAAS

Because melanoma contains high levels of the pigment melanin, the lysate-filled microneedles are fairly dark in color. They absorb light. The researchers take advantage of that in their new technique, shining near IR light onto the transdermal patch. The light is then largely absorbed by the melanin in the microneedles, which quickly raises the temperature of the skin where the patch is applied.

The local heat causes a fever-like environment in the skin and promotes the release of lysate from the microneedles, effectively attracting and activating immune cells. The increased temperature also contributes to the locally increased blood and lymphatic flow that facilitates the migration of . This increased immune response amplifies the ability of the body to remember - and respond to - the lysate, better protecting against incursions of melanoma.

To test the patch's potential as a vaccine, the researchers used three groups of mice: one group got the patch and was exposed to IR light; one group got the patch, but was not exposed to IR light; and one group got an empty patch. The mice had the patch on for five days. Ten days after the patch was applied, mice were injected with active .

Within one month, all of the mice who received the empty patch had died from melanoma. The lysate patch by itself, without exposure to near IR light, provided little protection: only 13 percent of the mice survived. Meanwhile, 100 percent of the mice that got the lysate patch and IR light survived after two months- and 87 percent of them had no tumors.

Diagram of the melanoma vaccine patch that targets antigen-presenting cells (APCs) directly via delivery of tumor lysates combined with melanin. Credit: Ye et al., Sci. Immunol. 2, eaan5692 (2017)

To further test the patch's therapeutic properties, researchers performed a similar experiment. Except this time, all of the mice had already developed two tumors - one on each side of the body. The patch was placed on the tumor on the left side of their bodies.

Mice that received the lysate patch and IR light saw significant decreases in tumor volume for both tumors, though the tumor on the left (the one directly under the patch) shrank more. The patch by itself, without IR light, limited growth - particularly on the left - but did not eradicate it.

"This demonstrates that the technology could have potential in targeting both cancer metastasis and primary tumors," says Gianpietro Dotti, coauthor of the study and a professor in the University of North Carolina School of Medicine.

The researchers then ran similar experiments using lysate made from two other cancers - breast cancer and a second form of melanoma with limited melanin. In both cases, the researchers added melanin to the lysate to make it more light absorbent. The results were similar to those from the first form of : patches used in conjunction with near IR got the most promising results.

Cancer immunotherapy uses melanin against melanoma
Combined vaccination (right) caused the expression of immunogenic danger signals in the form of heat shock proteins (HSP 70, in green) near cell nuclei (blue). Credit: Ye et al., Sci. Immunol. 2, eaan5692 (2017)

"These results are encouraging, but we are in the early stages of development," Gu says. "The next step would be a large animal study to further evaluate the safety and efficacy of the technique. And while it is much too early to estimate cost, we think that the treatment could be scaled up and would be affordable."

The paper, "A melanin-mediated cancer immunotherapy patch," is published in the journal Science Immunology.

Explore further: New findings explain how UV rays trigger skin cancer

More information: Y. Ye el al., "A melanin-mediated cancer immunotherapy patch," Science Immunology (2017). immunology.sciencemag.org/look … 6/sciimmunol.aan5692

Related Stories

New findings explain how UV rays trigger skin cancer

October 18, 2017
Melanoma, a cancer of skin pigment cells called melanocytes, will strike an estimated 87,110 people in the U.S. in 2017, according to the Centers for Disease Control and Prevention. A fraction of those melanomas come from ...

Regenerating heart muscle tissue using a 3D printer

September 14, 2017
The combination of the Canadian Light Source (CLS) synchrotron's unique biomedical imaging and therapy (BMIT) beamline and the vision of a multi-discipline researcher from the University of Saskatchewan in confirming fiction ...

Immunity against melanoma is only skin deep

April 14, 2017
In a newly published study, researchers at Dartmouth's Norris Cotton Cancer Center find that unique immune cells, called resident memory T cells, do an outstanding job of preventing melanoma. The work began with the question ...

Recommended for you

Immune signature predicts asthma susceptibility

February 16, 2018
Asthma is a chronic inflammatory disease driven by the interplay of genetics, environmental factors and a diverse cast of immune cells. In their latest study, researchers at La Jolla Institute for Allergy and Immunology (LJI) ...

Stem cell vaccine immunizes lab mice against multiple cancers

February 15, 2018
Stanford University researchers report that injecting mice with inactivated induced pluripotent stem cells (iPSCs) launched a strong immune response against breast, lung, and skin cancers. The vaccine also prevented relapses ...

Induced pluripotent stem cells could serve as cancer vaccine, researchers say

February 15, 2018
Induced pluripotent stem cells, or iPS cells, are a keystone of regenerative medicine. Outside the body, they can be coaxed to become many different types of cells and tissues that can help repair damage due to trauma or ...

Team paves the way to the use of immunotherapy to treat aggressive colon tumors

February 15, 2018
In a short space of time, immunotherapy against cancer cells has become a powerful approach to treat cancers such as melanoma and lung cancer. However, to date, most colon tumours appeared to be unresponsive to this kind ...

Can our genes help predict how women respond to ovarian cancer treatment?

February 15, 2018
Research has identified gene variants that play a significant role in how women with ovarian cancer process chemotherapy.

First comparison of common breast cancer tests finds varied accuracy of predictions

February 15, 2018
Commercially-available prognostic breast cancer tests show significant variation in their abilities to predict disease recurrence, according to a study led by Queen Mary University of London of nearly 800 postmenopausal women.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.