Regenerating heart muscle tissue using a 3D printer

September 14, 2017, University of Saskatchewan
Mohammad Izadifar. Credit: University of Saskatchewan

The combination of the Canadian Light Source (CLS) synchrotron's unique biomedical imaging and therapy (BMIT) beamline and the vision of a multi-discipline researcher from the University of Saskatchewan in confirming fiction as fact was published in the September issue of Tissue Engineering, one of the leading journals in this emerging global research field of tissue regeneration.

U of S researcher Mohammad Izadifar says he is combining medicine and engineering to develop ways to repair a damaged .

"The problem is the heart cannot repair itself once it is damaged due to a heart attack." he explained.

Izadifar has conducted his research out of three places on campus: the College of Engineering, the CLS and the College of Medicine where he has been certified in doing on rats, having trained in all the ethical protocols related to these research animals.

And thanks to the confirmation photo images he has from his collaboration with the CLS, Izadifar has already proven the 3-D printed human , which he has dubbed the "heart patch," can start to grow as intended in theory.

Once implanted in the , the heart patch is invisible to regular medical imaging. Izadifar has developed an X-ray at the CLS to monitor the 3-D-printed heart patch after implanting them in the laboratory mice. The CLS-derived pictures submitted to the journal show a 3-D-printed heart patch with human cells arranged in 200 micron-wide strands with the distance between each strand being 400 microns. One micron is one-thousandth of a millimeter.

Izadifar says the key in printing live human tissue is finding the right gel medium to become the "ink" for the printer.

His chosen "ink" or hydrogel is a natural, algae-based gel that is proven to be biocompatible with human body and also non-immunogenic, meaning the human body shouldn't reject the gel. It is also biodegradable because, at some point, the body should just absorb the gel and get rid of it.

"My goal is to take stem cells from the patient and then, in-vitro, I expand and instruct them to become heart cells," he explained.

When the heart starts absorbing the patch, those cells grow and slowly turn the 3-D printed patch from soft tissue into dense, heart muscle. In the mean time, if everything is working as it should, the rat's heart starts shooting out blood vessels into the heart patch so the new tissue gets a healthy supply of oxygen.

The key, says Izadifar, is getting the cells to align in the 3-D printed heart patch, ensure they are tightly joined and that they are capable of conducting electricity, just like natural heart muscle.

"If it is to become heart , the patch needs to be robust and conductive.

"With different 3-D printing patterns, we can control the toughness, conductivity and cell alignment of the patch," he said. "With the technique that I developed at the CLS, we would be able to monitor the 3-D-printed heart during the healing process."

Explore further: 3-D-printed patch can help mend a 'broken' heart

More information: Tissue Engineering, Parts A, B, & C: www.liebertpub.com/overview/ti … parts-a-b-and-c/595/

Related Stories

3-D-printed patch can help mend a 'broken' heart

April 14, 2017
A team of biomedical engineering researchers, led by the University of Minnesota, has created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. The discovery is a major step ...

Injectable tissue patch could help repair damaged organs

August 14, 2017
A team of U of T Engineering researchers is mending broken hearts with an expanding tissue bandage a little smaller than a postage stamp.

Stem cell patch shows early promise in treating heart failure

April 5, 2017
Patching a damaged heart with a patient's own muscle stem cells improves symptoms of heart failure, according to a Phase I clinical trial reported in Journal of the American Heart Association, the Open Access Journal of the ...

Stem cell-sheet transplantation feasible in cardiomyopathy

April 6, 2017
(HealthDay)—Stem cell-sheet transplantation shows promise in the treatment of cardiomyopathy, according to research published online April 5 in the Journal of the American Heart Association.

Mending a broken heart: New advanced heart patch developed

November 30, 2016
Researchers have made a significant advance in heart attack research, with the development of a polymer patch which improves the conduction of electrical impulses across damaged heart tissue.

Tissue engineering advance reduces heart failure in model of heart attack

January 26, 2017
Researchers have grown heart tissue by seeding a mix of human cells onto a 1-micron-resolution scaffold made with a 3-D printer. The cells organized themselves in the scaffold to create engineered heart tissue that beats ...

Recommended for you

A nanoparticle inhalant for treating heart disease

January 18, 2018
A team of researchers from Italy and Germany has developed a nanoparticle inhalant for treating people suffering from heart disease. In their paper published in the journal Science Translational Medicine, the group describes ...

Starting periods before age of 12 linked to heightened risk of heart disease and stroke

January 15, 2018
Starting periods early—before the age of 12—is linked to a heightened risk of heart disease and stroke in later life, suggests an analysis of data from the UK Biobank study, published online in the journal Heart.

'Decorated' stem cells could offer targeted heart repair

January 10, 2018
Although cardiac stem cell therapy is a promising treatment for heart attack patients, directing the cells to the site of an injury - and getting them to stay there - remains challenging. In a new pilot study using an animal ...

Two simple tests could help to pinpoint cause of stroke

January 10, 2018
Detecting the cause of the deadliest form of stroke could be improved by a simple blood test added alongside a routine brain scan, research suggests.

Exercise is good for the heart, high blood pressure is bad—researchers find out why

January 10, 2018
When the heart is put under stress during exercise, it is considered healthy. Yet stress due to high blood pressure is bad for the heart. Why? And is this always the case? Researchers of the German Centre for Cardiovascular ...

Heart-muscle patches made with human cells improve heart attack recovery

January 10, 2018
Large, human cardiac-muscle patches created in the lab have been tested, for the first time, on large animals in a heart attack model. This clinically relevant approach showed that the patches significantly improved recovery ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.