Infection mechanism of Rift Valley fever virus identified

November 10, 2017
Model of the Rift Valley virus fusion protein interacting with a cell membrane (in white and green), obtained using molecular dynamics. The enlargement shows the lipid head 'recognition pocket', with the protein represented at the surface. Credit: Pablo Guardado-Calvo, Institut Pasteur

Rift Valley fever virus, transmitted by mosquitoes, is responsible for outbreaks in livestock in Africa and can also be fatal in humans. Scientists from the Institut Pasteur and the CNRS, working with the University of Göttingen, have characterized the mechanism used by the virus to insert one of its envelope proteins into the host cell membrane, thereby enabling it to infect the cell. They have demonstrated that the viral envelope protein has a "pocket" that specifically recognizes a category of lipids in the cell membrane. This pocket is also found in other human pathogenic viruses transmitted by different mosquitoes, such as the Zika and chikungunya viruses. Understanding these interactions should pave the way for the identification of new therapeutic strategies that target viruses transmitted by these mosquitoes.

The findings were published in the journal Science on November 3, 2017.

Rift Valley fever (RVF) virus is a bunyavirus that was first isolated from sheep in Kenya in 1930. The spread of RVF has serious economic consequences in Africa. The virus also causes severe disease in humans who come into contact with contaminated animals or who are bitten by infected , resulting in severe encephalitis and hemorrhagic fever that can prove fatal. RVF therefore also represents a significant public health threat. In 2000, the virus spread outside the African continent to Saudi Arabia and Yemen. There are concerns that it may also extend to Asia and Europe.

RVF virus spreads in its host by fusing with cell membranes so that it can proliferate and infect other cells. Scientists in the Structural Virology Unit (Institut Pasteur/CNRS) directed by Félix Rey, in collaboration with the University of Göttingen, characterized the mechanism used by the virus to insert one of its surface proteins into the host cell and drive fusion. They also determined the atomic structure of this new -lipid complex, demonstrating that this protein has a "pocket" which specifically recognizes the hydrophilic heads of some of the lipids that make up the cell membrane. Importantly, this "recognition pocket" is found not only in RVF but also in the envelope proteins of other viral families transmitted by arthropods, such as the dengue, Zika and chikungunya viruses, which have caused major worldwide epidemics in recent years. In the homologous protein of the , the scientists pinpointed one of the residues of the recognition pocket as amino acid 226. In 2006, the A226V mutation enabled chikungunya to be transmitted by a new species of mosquito that is prevalent on Reunion Island (Aedes albopictus, or the tiger mosquito).

"This study offers a further illustration of the power of comparative analyses of viruses that appear very distant, such as bunyaviruses, alphaviruses and flaviviruses, which can result in highly significant findings and reveal shared mechanisms of action," said Félix Rey, head of the Structural Virology Unit (Institut Pasteur/CNRS), where the study was carried out.

Understanding the mechanism used by these viruses for insertion in the paves the way for the development of therapeutic agents that target the "pocket" involved in the fusion of viral and cell membranes with the aim of preventing pathogenic arboviruses from entering host .

Explore further: Millions of infected Brazilian mosquitoes to tackle dengue

More information: P. Guardado-Calvo et al, A glycerophospholipid-specific pocket in the RVFV class II fusion protein drives target membrane insertion, Science (2017). DOI: 10.1126/science.aal2712

Related Stories

Millions of infected Brazilian mosquitoes to tackle dengue

August 30, 2017
Brazilian scientists on Tuesday began to unleash the first of millions of mosquitoes infected with a bacteria meant to prevent the insects from transmitting the dengue virus to humans.

Research reveals how antibodies neutralize mosquito-borne virus

April 2, 2013
Researchers have learned the precise structure of the mosquito-transmitted chikungunya virus pathogen while it is bound to antibodies, showing how the infection is likely neutralized.

Mosquitoes that spread Zika virus could simultaneously transmit other viruses

May 19, 2017
A new study led by Colorado State University researchers found that Aedes aegypti, the primary mosquito that carries Zika virus, might also transmit chikungunya and dengue viruses with one bite. The findings shed new light ...

Recommended for you

Four simple tests could help GPs spot pneumonia and reduce unnecessary antibiotics

November 23, 2017
Testing for fever, high pulse rate, crackly breath sounds, and low oxygen levels could be key to helping GPs distinguish pneumonia from less serious infections, according to a large study published in the European Respiratory ...

New approach to tracking how deadly 'superbugs' travel could slow their spread

November 22, 2017
Killer bacteria - ones that have out-evolved our best antibiotics—may not go away anytime soon. But a new approach to tracking their spread could eventually give us a fighting chance to keep their death toll down.

Research points to diagnostic test for top cause of liver transplant in kids

November 22, 2017
Biliary atresia is the most common cause of liver transplants for children in the United States. Now researchers report in Science Translational Medicine finding a strong biomarker candidate that could be used for earlier ...

Metabolites altered in chronic kidney disease

November 22, 2017
Chronic kidney disease (CKD) affects 1 in 7 people in the United States, according to the U.S. National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK). These individuals have a very high risk of cardiovascular ...

Alcohol consumption and metabolic factors act together to increase the risk of severe liver disease

November 22, 2017
A new study provides insights into the interaction between alcohol consumption and metabolic factors in predicting severe liver disease in the general population. The findings, which are published in Hepatology, indicate ...

Rainfall can indicate that mosquito-borne epidemics will occur weeks later

November 22, 2017
A new study demonstrates that outbreaks of mosquito-borne viruses Zika and Chikungunya generally occur about three weeks after heavy rainfall.Researchers also found that Chikungunya will predominate over Zika when both circulate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.