Researchers find lung stem cell, heal lung injury in mice

November 15, 2017 by Christopher Vaughan
An image of an injured mouse lung partially regenerated by injected lung stem cells. The newly regenerated lung tissue is red, and the type-2 alveolar cells are green. Credit: Massimo Nichane

Stanford scientists have found a cell that creates the two different compartments in the mouse lung. They hope their discovery could lead to better therapies for people with lung disease.

A researcher at the School of Medicine and his colleagues have succeeded in isolating mouse lung stem , growing them in large volumes and incorporating them into injured lung tissue in mice.

The work raises hopes for regenerative therapies that could heal currently intractable lung diseases.

A study describing the research was published online Nov. 6 in Nature Methods. Kyle Loh, PhD, an investigator at the Stanford Institute for Stem Cell Biology and Regenerative Medicine, and Bing Lim, MD, PhD, an investigator at the Genome Institute of Singapore, share senior authorship. The lead author is Massimo Nichane, PhD, currently a research scientist at the Stanford stem cell institute.

The lungs are among the most vital organs of the body. In conjunction with the cardiovascular system, they allow air to travel to every cell and get rid of the waste products of respiration, such as carbon dioxide. For many people with end-stage lung diseases, the only option is lung transplantation.

"Scientists have previously had little success in putting new lung cells into damaged lung to regenerate healthy tissue," Loh said. "We decided to see if we could do that in an animal model."

The researchers started by working to improve on current knowledge of lung stem cells. The lung is divided into two compartments, Loh said: the airway, which allows for passage of air in and out of the lung; and the alveoli, where gases pass in and out of the blood. Other researchers had previously isolated one stem cell for the airway and another stem cell for the alveoli. Loh and his colleagues searched for and found a single lung stem cell that could create cells in both the airway and the alveoli. These multipotent lung stem cells were typified by their display of a protein marker called Sox9.

From one to 100 billion billion

Once they had isolated the stem cells, they were able to make them multiply dramatically. Each mouse lung stem cell that they start started with was able to grow into 100 billion billion lung stem cells over the course of six months. Previously, researchers had not had much success expanding any populations in the laboratory.

Finally, they injected the stem cells into mouse lungs that had been injured by a variety of toxins.  "What we saw was that these repaired the injured tissue and were able to differentiate into the many different kinds of cells that make up the healthy lung," said Nichane.

"Our newfound ability to grow these mouse multipotent lung stem cells in a petri dish in very large numbers, and the cells' ability to regenerate both lung airway and alveolar tissue, constitutes a first step towards future regenerative therapies," Loh said. "Future work will focus on whether analogous multipotent stem cells can be found and cultivated from humans, which may open the way to eventually replenishing damaged in the clinic."

Explore further: 3-D organoids and RNA sequencing reveal the crosstalk driving lung cell formation

More information: Massimo Nichane et al. Isolation and 3D expansion of multipotent Sox9+ mouse lung progenitors, Nature Methods (2017). DOI: 10.1038/nmeth.4498

Related Stories

3-D organoids and RNA sequencing reveal the crosstalk driving lung cell formation

September 7, 2017
To stay healthy, our lungs have to maintain two key populations of cells: the alveolar epithelial cells, which make up the little sacs where gas exchange takes place, and bronchiolar epithelial cells (also known as airway ...

US researchers identify first human lung stem cell

May 11, 2011
For the first time, researchers at Brigham and Women's Hospital (BWH) have identified a human lung stem cell that is self-renewing and capable of forming and integrating multiple biological structures of the lung including ...

Tracking nanodiamond-tagged stem cells

August 5, 2013
A method that is used to track the fate of a single stem cell within mouse lung tissue is reported in a study published online this week in Nature Nanotechnology. The method may offer insights into the factors that determine ...

Space station crew takes a breather with lung tissue investigation

October 23, 2017
The microgravity environment of the International Space Station impacts nearly every system within the human body. Researchers are studying the effects to the eyes, heart, muscles, and bones, but an area that hasn't received ...

Researchers reverse some lung diseases in mice by coaxing production of healthy cells

January 30, 2014
It may be possible one day to treat several lung diseases by introducing proteins that direct lung stem cells to grow the specific cell types needed to repair the lung injuries involved in the conditions, according to new ...

Trials show unique stem cells a potential asthma treatment

June 28, 2017
A study led by scientists at Monash University has shown that a new therapy developed through stem cell technology holds promise as a treatment for chronic asthma.

Recommended for you

Tiny bilirubin-filled capsules could improve survival of transplanted pancreatic cells

December 18, 2017
By encapsulating bilirubin within tiny nanoparticles, researchers from North Carolina State University and the Ohio State University have improved the survival rates of pancreatic islet cells in vitro in a low-oxygen environment. ...

Tracking effects of a food preservative on the gut microbiome

December 18, 2017
Antimicrobial compounds added to preserve food during storage are believed to be benign and non-toxic to the consumer, but there is "a critical scientific gap in understanding the potential interactions" they may have with ...

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.