Encouraging oxygen's assault on iron may offer new way to kill lung cancer cells

November 22, 2017, NYU Langone Health
Lung CA seen on CXR. Credit: James Heilman, MD/Wikipedia

Blocking the action of a key protein frees oxygen to damage iron-dependent proteins in lung and breast cancer cells, slowing their growth and making them easier to kill. This is the implication of a study led by researchers from Perlmutter Cancer Center at NYU Langone Health, and published online November 22 in Nature.

Human cells contain 48 proteins that are known to depend on complexes of iron and sulfur to function. Dismantled whenever they encounter , these iron-sulfur clusters must be constantly replaced if normal cells are to survive in high-oxygen environments like the lungs, and even more so if are to grow with abnormal speed.

The current study shows that lung adenocarcinoma cells survive this oxygen threat by producing more of a protein called NFS1, which harvests sulfur from the amino acid cysteine to make iron-sulfur clusters. The researchers also found that that have spread to the lungs dial up NFS1 production upon arriving in a high-oxygen environment, while cells remaining in the breast do not.

"Our data support the notion that NFS1 provides a central protection for cancer cells against oxygen, and we hope to find ways to take it away," says lead study author Richard Possemato, PhD, assistant professor in the Department of Pathology at NYU School of Medicine.

In a genetic trick, the research team used short hairpin RNAs to switch off 2,752 genes related to cell metabolism, including iron and sulfur biochemistry, one by one. They found that many genes which were essential to survival in high oxygen levels were not as important in low oxygen.

Strikingly, the NFS1 gene was the most essential for survival at the elevated oxygen level present in the lungs, but not at the much lower oxygen level encountered by cells under the skin. When the researchers injected cancer cells with or without NFS1 under the skin of mice, a low oxygen environment, they grew equally well. But the same cells failed to form tumors in the lungs. Consistent with these findings in mice, analysis of human datasets revealed that NFS1 levels were higher in lung adenocarcinoma cells than in nearby, normal lung tissue.

Two New Ways to Stop Lung Cancer Growth

NFS1 may be vital to cancer cell survival in two ways, say the authors. If NFS1 is not active enough to keep up with the oxygen-mediated destruction of iron-sulfur clusters, cancer cells can run out of key building blocks for important proteins and just stop multiplying, researchers found.

Alternatively, the number of iron-sulfur clusters may serve as a sensor of iron levels. When clusters dip too low, say the authors, cells "think" they are short on iron, and free more from the molecules that store it. In studies of cultured cancer , the Perlmutter Cancer Center team found that this build-up of "free" iron causes the production of (ROS) that damage cell membranes and trigger a type of cell death called ferroptosis. The authors note that future work will be needed to confirm this effect in live animals.

"Our study suggests that future anti-cancer treatments that deprive of antioxidant protection against ROS can be combined with drugs that block NFS1, promoting cell death by iron-mediated toxicity, even in tumors that are at low oxygen," says Possemato.

As a next step, the research team is screening for experimental compounds that block the ability of NFS1 to feed the production of iron-sulfur clusters.

Explore further: Team identifies protein key to cancer cells ability to spread

More information: NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis, Nature (2017). nature.com/articles/doi:10.1038/nature24637

Related Stories

Team identifies protein key to cancer cells ability to spread

November 17, 2017
University of Guelph scientists have made a discovery that could reduce the spread of cancer by hindering a protein that binds cancer cells together and allows them to invade tissues.

New system finds and targets vulnerabilities in lung cancer cells

October 2, 2017
Genetic changes that help lung cancer thrive also make it vulnerable to a promising experimental drug, according to a study led by researchers from Perlmutter Cancer at NYU Langone Health, and published online October 2 in ...

Recommended for you

Cancer comes back all jacked up on stem cells

March 19, 2018
After a biopsy or surgery, doctors often get a molecular snapshot of a patient's tumor. This snapshot is important - knowing the genetics that cause a cancer can help match a patient with a genetically-targeted treatment. ...

A small, daily dose of Viagra may reduce colorectal cancer risk

March 19, 2018
A small, daily dose of Viagra significantly reduces colorectal cancer risk in an animal model that is genetically predetermined to have the third leading cause of cancer death, scientists report.

Researchers create a drug to extend the lives of men with prostate cancer

March 16, 2018
Fifteen years ago, Michael Jung was already an eminent scientist when his wife asked him a question that would change his career, and extend the lives of many men with a particularly lethal form of prostate cancer.

Machine-learning algorithm used to identify specific types of brain tumors

March 15, 2018
An international team of researchers has used methylation fingerprinting data as input to a machine-learning algorithm to identify different types of brain tumors. In their paper published in the journal Nature, the team ...

Higher doses of radiation don't improve survival in prostate cancer

March 15, 2018
A new study shows that higher doses of radiation do not improve survival for many patients with prostate cancer, compared with the standard radiation treatment. The analysis, which included 104 radiation therapy oncology ...

Joint supplement speeds melanoma cell growth

March 15, 2018
Chondroitin sulfate, a dietary supplement taken to strengthen joints, can speed the growth of a type of melanoma, according to experiments conducted in cell culture and mouse models.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.