Encouraging oxygen's assault on iron may offer new way to kill lung cancer cells

November 22, 2017, NYU Langone Health
Lung CA seen on CXR. Credit: James Heilman, MD/Wikipedia

Blocking the action of a key protein frees oxygen to damage iron-dependent proteins in lung and breast cancer cells, slowing their growth and making them easier to kill. This is the implication of a study led by researchers from Perlmutter Cancer Center at NYU Langone Health, and published online November 22 in Nature.

Human cells contain 48 proteins that are known to depend on complexes of iron and sulfur to function. Dismantled whenever they encounter , these iron-sulfur clusters must be constantly replaced if normal cells are to survive in high-oxygen environments like the lungs, and even more so if are to grow with abnormal speed.

The current study shows that lung adenocarcinoma cells survive this oxygen threat by producing more of a protein called NFS1, which harvests sulfur from the amino acid cysteine to make iron-sulfur clusters. The researchers also found that that have spread to the lungs dial up NFS1 production upon arriving in a high-oxygen environment, while cells remaining in the breast do not.

"Our data support the notion that NFS1 provides a central protection for cancer cells against oxygen, and we hope to find ways to take it away," says lead study author Richard Possemato, PhD, assistant professor in the Department of Pathology at NYU School of Medicine.

In a genetic trick, the research team used short hairpin RNAs to switch off 2,752 genes related to cell metabolism, including iron and sulfur biochemistry, one by one. They found that many genes which were essential to survival in high oxygen levels were not as important in low oxygen.

Strikingly, the NFS1 gene was the most essential for survival at the elevated oxygen level present in the lungs, but not at the much lower oxygen level encountered by cells under the skin. When the researchers injected cancer cells with or without NFS1 under the skin of mice, a low oxygen environment, they grew equally well. But the same cells failed to form tumors in the lungs. Consistent with these findings in mice, analysis of human datasets revealed that NFS1 levels were higher in lung adenocarcinoma cells than in nearby, normal lung tissue.

Two New Ways to Stop Lung Cancer Growth

NFS1 may be vital to cancer cell survival in two ways, say the authors. If NFS1 is not active enough to keep up with the oxygen-mediated destruction of iron-sulfur clusters, cancer cells can run out of key building blocks for important proteins and just stop multiplying, researchers found.

Alternatively, the number of iron-sulfur clusters may serve as a sensor of iron levels. When clusters dip too low, say the authors, cells "think" they are short on iron, and free more from the molecules that store it. In studies of cultured cancer , the Perlmutter Cancer Center team found that this build-up of "free" iron causes the production of (ROS) that damage cell membranes and trigger a type of cell death called ferroptosis. The authors note that future work will be needed to confirm this effect in live animals.

"Our study suggests that future anti-cancer treatments that deprive of antioxidant protection against ROS can be combined with drugs that block NFS1, promoting cell death by iron-mediated toxicity, even in tumors that are at low oxygen," says Possemato.

As a next step, the research team is screening for experimental compounds that block the ability of NFS1 to feed the production of iron-sulfur clusters.

Explore further: Team identifies protein key to cancer cells ability to spread

More information: NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis, Nature (2017). nature.com/articles/doi:10.1038/nature24637

Related Stories

Team identifies protein key to cancer cells ability to spread

November 17, 2017
University of Guelph scientists have made a discovery that could reduce the spread of cancer by hindering a protein that binds cancer cells together and allows them to invade tissues.

New system finds and targets vulnerabilities in lung cancer cells

October 2, 2017
Genetic changes that help lung cancer thrive also make it vulnerable to a promising experimental drug, according to a study led by researchers from Perlmutter Cancer at NYU Langone Health, and published online October 2 in ...

Recommended for you

Magnetized wire could be used to detect cancer in people, scientists report

July 16, 2018
A magnetic wire used to snag scarce and hard-to-capture tumor cells could prove to be a swift and effective tactic for early cancer detection, according to a study by researchers at the Stanford University School of Medicine.

Researchers suggest new treatment for rare inherited cancers

July 16, 2018
Studying two rare inherited cancer syndromes, Yale Cancer Center (YCC) scientists have found the cancers are driven by a breakdown in how cells repair their DNA. The discovery, published today in Nature Genetics, suggests ...

Researchers map 'family trees' of acute myeloid leukemia

July 16, 2018
For the first time, a team of international researchers has mapped the family trees of cancer cells in acute myeloid leukaemia (AML) to understand how this blood cancer responds to a new drug, enasidenib. The work also explains ...

Scientists sharpen the edges of cancer chemotherapy with CRISPR

July 13, 2018
Tackling unsolved problems is a cornerstone of scientific research, propelled by the power and promise of new technologies. Indeed, one of the shiniest tools in the biomedical toolkit these days is the genome editing system ...

Products of omega-3 fatty acid metabolism may have anticancer effects, study shows

July 13, 2018
A class of molecules formed when the body metabolizes omega-3 fatty acids could inhibit cancer's growth and spread, University of Illinois researchers report in a new study in mice. The molecules, called endocannabinoids, ...

Looking at the urine and blood may be best in diagnosing myeloma

July 13, 2018
When it comes to diagnosing a condition in which the plasma cells that normally make antibodies to protect us instead become cancerous, it may be better to look at the urine as well as the serum of our blood for answers, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.