Researchers reveal new details on aged brain, Alzheimer's and dementia

November 21, 2017, Allen Institute for Brain Science
Thioflavin-S staining of a brain tissue sample from the Aging, Dementia and TBI study. Staining reveals amyloid plaques and neurofibrillary tangles associated with Alzheimer's disease. Credit: Allen Institute for Brain Science

In a comprehensive analysis of samples from 107 aged human brains, researchers at the Allen Institute for Brain Science, UW Medicine and Kaiser Permanente Washington Health Research Institute have discovered details that will help researchers better understand the biological bases for Alzheimer's disease and dementia in older populations. The analysis also highlights surprising variability in the aged brain, including examples of donors with resilience to pathology. The research is published this month in the journal eLife, and the data underlying the research are publicly available as part of the suite of open data resources at the Allen Brain Atlas portal.

"Since the population of individuals over 90 years of age is rapidly increasing, understanding both healthy aging and age-related disease is essential," says Ed Lein, Investigator at the Allen Institute for Brain Science. "This means we must discover how correlates with the pathologies we typically attribute to diseases like Alzheimer's in aged brains, as well as the biology underlying individual vulnerability and resilience to disease." In this analysis, researchers sought to understand whether associations previously identified between cognitive status, and brain pathologies—such as the plaques and tangles typically found in Alzheimer's disease—held true in a well characterized, aged population. To achieve this goal, researchers developed a state of the art approach combining traditional and quantitative measures to probe the relationships between gene expression and age-related neurodegeneration.

"Several studies exist that compare expression in donor brains aged 60-85 years, but few in the more aged cohort we were able to study here," says Jeremy Miller, Ph.D., Senior Scientist I at the Allen Institute for Brain Science and lead author on the publication. "We found that the more aged brains still showed a correlation between cognitive decline and the Alzheimer's-associated plaques and tangles, although the relationship was not as strong as in younger cohorts."

In addition, the research revealed a surprising relationship between dementia and decreased quality of RNA—a key player in gene expression—in the more aged brain.

Thioflavin-S staining of a brain tissue sample from the Aging, Dementia and TBI study. Staining reveals amyloid plaques and neurofibrillary tangles associated with Alzheimer's disease. Credit: Allen Institute for Brain Science

"One factor that is not always taken into account when studying gene expression in the aged brain is the quality of the genetic material itself," says Miller. "This variable is not necessarily related to any specific pathology or disease, but these results highlight the importance of properly controlling for RNA quality when studying the aged brain and indicate that degradation of genetic material may be an underappreciated feature of neurodegeneration or dementia."

All of the data underlying the research is part of the Aging, Dementia and TBI resource, freely available through the Allen Brain Atlas data portal. "We want to promote a model of systematic, collaborative, multidimensional study of the diseased brain and open access to data and tools to facilitate discovery across the entire basic and biomedical research community," says Lein.

"We anticipate that this dataset and research model will inform and help shape future brain aging research to propel a deeper understanding of the mechanisms driving neurological disease for improved diagnostic approaches and effective therapeutic strategies," says C. Dirk Keene, M.D., Ph.D., study co-author and Director of UW Medicine Neuropathology.

The study samples come from the Adult Changes in Thought (ACT) study, a longitudinal research effort led by Eric B. Larson, M.D., M.P.H., and Paul K. Crane, M.D., M.P.H., of the Kaiser Permanente Washington Health Research Institute (KPWHRI) (formerly known as Group Health Research Institute) and the University of Washington School of Medicine to collect data on thousands of aging adults, including detailed information on their health histories and cognitive abilities.

"This collaboration with the Allen Institute for Brain Science has allowed us to gain insights never before possible into the relationships between neuropathology, gene expression, RNA quality, and clinical features tracked in the ACT study over more than 20 years," says Larson, who has led the National Institute of Aging-supported study from its start in 1986 and is Vice President for Research and Health Care Innovation at Kaiser Permanente Washington. "We are grateful to the thousands of volunteer subjects who worked with us and those who donated their brains to science. The results are transformative in improving our understanding of the aging brain, a theme of the ACT study, which aims to learn ways to reduce the burden of dementia for individuals and society overall."

Explore further: Allen Institute releases powerful new data on the aging brain and traumatic brain injury

More information: Jeremy A Miller et al, Neuropathological and transcriptomic characteristics of the aged brain, eLife (2017). DOI: 10.7554/eLife.31126

Related Stories

Allen Institute releases powerful new data on the aging brain and traumatic brain injury

April 26, 2016
The Allen Institute for Brain Science has announced major updates to its online resources available at brain-map.org, including a new resource on Aging, Dementia and Traumatic Brain Injury (TBI) in collaboration with UW Medicine ...

Higher brain glucose levels may mean more severe Alzheimer's

November 6, 2017
For the first time, scientists have found a connection between abnormalities in how the brain breaks down glucose and the severity of the signature amyloid plaques and tangles in the brain, as well as the onset of eventual ...

Researchers decode patterns that make our brains human

November 16, 2015
The human brain may be the most complex piece of organized matter in the known universe, but Allen Institute researchers have begun to unravel the genetic code underlying its function. Research published this month in Nature ...

Researchers help find pathologic hallmarks of Alzheimer's in aged chimpanzee brains

August 1, 2017
Dementia affects one-third of all people older than 65 years in the United States. The most common cause of dementia is Alzheimer's disease, a progressive, irreversible brain disease that results in impaired cognitive functioning ...

Abnormal brain protein may contribute to Alzheimer's disease development

September 30, 2016
A recently-recognized pathologic protein in the brain may play a larger role in the development of clinical Alzheimer's disease dementia than previously recognized, according to a study by researchers at Rush University Medical ...

Genes associated with resilience against brain pathology identified

April 25, 2017
The pathologies (damage) in the brain that stroke, Alzheimer's disease and other neurological conditions cause in older adults only partially explain the memory loss, reduced reasoning ability and other cognitive impairments ...

Recommended for you

New study suggests viral connection to Alzheimer's disease

June 21, 2018
Of the major illnesses facing humanity, Alzheimer's disease (AD) remains among the most pitiless and confounding. Over a century after its discovery, no effective prevention or treatment exists for this progressive deterioration ...

New screening tool could help diagnose early cognitive decline in dementia from home

June 19, 2018
An international team of scientists have developed a new way to screen for age-related cognitive decline at home using a test which asks people to detect sounds and flashes on their laptop or phone.

Genes linked to Alzheimer's contribute to damage in different ways

June 12, 2018
Multiple genes are implicated in Alzheimer's disease. Some are linked to early-onset Alzheimer's, a condition that develops in one's 30s, 40s and 50s, while others are associated with the more common late-onset form of the ...

Researchers reverse cognitive impairments in mice with dementia

June 8, 2018
Reversing memory deficits and impairments in spatial learning is a major goal in the field of dementia research. A lack of knowledge about cellular pathways critical to the development of dementia, however, has stood in the ...

As mystery deepens over the cause of Alzheimer's, researchers seek new answers

June 6, 2018
For more than 20 years, much of the leading research on Alzheimer's disease has been guided by the "amyloid hypothesis."

Research reveals how Tau aggregates can contribute to cell death in Alzheimer's disease

June 5, 2018
New evidence suggests a mechanism by which progressive accumulation of Tau protein in brain cells may lead to Alzheimer's disease. Scientists studied more than 600 human brains and fruit fly models of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.