Scientists create a recipe to make human blood-brain-barrier

November 8, 2017 by Terry Devitt, University of Wisconsin-Madison
A look at the blood-brain barrier. Credit: UW-Madison

The blood-brain barrier is the brain's gatekeeper. A nearly impenetrable shield of cells, it keeps toxins and other agents that may be in circulating blood from gaining access to and harming the brain.

A critical anatomical structure, the is the brain's first and most comprehensive line of defense. But in addition to protecting the brain, it also is involved in disease and effectively blocks many of the small-molecule drugs that might make effective therapies for a host of neurological conditions, including such things as stroke, trauma and cancer.

Rudimentary models of the barrier have been created in the laboratory dish using human stem cells, but such models have depended on mixing a cocktail of to elicit the complex chemical interplay that directs blank slate stem cells to become the endothelial cells that make up the .

In a report published this week (Nov. 8, 2017) in Science Advances, researchers from the University of Wisconsin-Madison detail a defined, step-by-step process to make a more exact mimic of the human blood-brain barrier in the laboratory dish. The new model will permit more robust exploration of the cells, their properties and how scientists might circumvent the barrier for therapeutic purposes.

"The main advance is we now have a fully defined process that uses smallmolecules to guide cells through the developmental process," says University of Wisconsin-Madison Professor of chemical and Sean Palecek of the method that substitutes chemical factors for cells to push stem cells to become the brain endothelial cells that compose the blood-brain barrier. "It is fully defined. We know what components are acting on the cells" and at what stages of development.

To develop the new method for making the cells, Palecek collaborated with the laboratory of UW-Madison chemical and biological engineering Professor Eric Shusta. Tongcheng Qian, a Wisconsin postdoctoral researcher in chemical and biological engineering, led the study. The team has applied for a patent on the process through the Wisconsin Alumni Research Foundation, the not-for-profit organization that manages UW-Madison intellectual property.

In stem cell science, often, directing to become any of the hundreds of cell types that make up the human body is often as much art as science. By identifying specific chemical molecules that can chaperone the cells through the various stages of development to become the brain endothelial cells, the Wisconsin team, in effect, provides a recipe to standardize making the cells in quantities useful for research and things like high-throughput drug screens.

"Other approaches require mixing and co-culture of other cell types," explains Shusta. "This will enable the non-expert to deploy the model. It's an off-the-shelf recipe." Using induced cells, from patients, which are reprogrammed to an embryonic stem cell-like state, will also allow researchers to better understand the etiology and progression of a variety of neurological disorders. Things like infections of the brain and multiple sclerosis may be better understood at their onset.

"It standardizes the approach. It can be applied to a broader portfolio of cells. We can really investigate disease," says Palecek, noting that an ability to track cells as they progress through various phases of development can help scientists see the cascade of cellular events that occur as neurological conditions manifest themselves.

The new method, he adds, will also allow industry to scale up production of the brain endothelial cells for drug discovery. By exposing to various agents, researchers can assess toxicity and effect of promising therapies.

Explore further: Blood-brain barrier building blocks forged from human stem cells

More information: "Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells" Science Advances (2017). advances.sciencemag.org/content/3/11/e1701679

Related Stories

Blood-brain barrier building blocks forged from human stem cells

June 24, 2012
The blood-brain barrier -- the filter that governs what can and cannot come into contact with the mammalian brain -- is a marvel of nature. It effectively separates circulating blood from the fluid that bathes the brain, ...

Patient's cells used to replicate dire developmental condition

May 16, 2017
The blood-brain barrier is biology's proverbial double-edged sword.

Drugs in disguise heal the brain

September 12, 2017
The treatment of brain diseases is on the verge of a breakthrough. Researchers from Aalborg University are developing a new method that 'smuggles' medicine past the brain's defense systems, giving hope that diseases such ...

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

Stem cells yield nature's blueprint for body's vasculature

May 30, 2017
In the average adult human, there are an estimated 100,000 miles of capillaries, veins and arteries—the plumbing that carries life-sustaining blood to every part of the body, including vital organs such as the heart and ...

Recommended for you

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

Gene mutation found to cause macrocephaly and intellectual deficits

November 13, 2018
The absence of one copy of a single gene in the brain causes a rare, as-yet-unnamed neurological disorder, according to new research that builds on decades of work by a University at Buffalo biochemist and his colleagues.

Can scientists change mucus to make it easier to clear, limiting harm to lungs?

November 12, 2018
For healthy people, mucus is our friend. It traps potential pathogens so our airways can dispatch nasty bugs before they cause harm to our lungs. But for people with conditions such as cystic fibrosis (CF) and chronic obstructive ...

Scientists uncover new gatekeeper function of anti-aging molecule

November 12, 2018
The protein klotho has been shown to promote longevity and counteract aging-related impairments. Having more klotho seems to allow for longer and healthier lives, whereas a depletion of this molecule accelerates aging and ...

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

Researchers explain how your muscles form

November 12, 2018
All vertebrates need muscles to function; they are the most abundant tissue in the human body and are integral to movement.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.