Tapping the genome's social network to find cancer drivers

December 5, 2017 by Tom Ulrich, Broad Institute of MIT and Harvard
Tapping the genome's social network to find cancer drivers
Credit : Lauren Solomon, Broad Communications (adapted from Horn H, Lawrence MS, et al.)

Any one tumor might harbor mutations in thousands of different genes. The challenge is to find the driver mutations—which fuel cancerous activity, and might be promising treatment targets—within the haystack of passengers (mutations that, while present in the tumor, do not help it grow or spread).

In a paper in Nature Methods, a team led by Heiko Horn and Kasper Lage of the Broad Institute's Stanley Center for Psychiatric Research and Massachusetts General Hospital MGH; Michael Lawrence and Jesse Boehm of the Broad Cancer Program; and Gad Getz of the Cancer Program and MGH describe NetSig, an open-source computational tool that looks for cancer-driving mutations by joining cancer genome data with protein interaction data. NetSig is designed to complement existing tools and expand discovery from cancer genomes in any existing analysis pipeline.

Proteins interactions reveal a sort of genomic Facebook, a social network through which genes share information and carry out a cell's functions. The added functional perspective can help researchers identify with greater confidence, especially in genes that mutate only rarely.

To that end, NetSig taps InWeb_InBioMap (InWeb_IM), a protein interaction map with data on more than half a million protein-protein interactions. Lage's lab developed InWeb_IM in 2016 for functionally interpreting large genomic data sets.  

To develop NetSig, the team merged InWeb_IM with The Cancer Genome Atlas (TCGA)-derived exome data from 4,742 tumors spanning 21 cancer types. The team then tested the tool's capabilities in a series of in silico and in vivo experiments, finding that NetSig could:

  1. Recognize known cancer drivers in 60 percent of tested tumor types, including those with relatively few samples.
  2. Predict new driver genes that validation experiments—conducted with the Cancer Program's Target Accelerator initiative—showed were truly tumor-promoting.
  3. Identify hitherto-unnoticed drivers lurking in TCGA and other datasets. In particular, NetSig revealed that between 4 and 14 percent of lung patients previously deemed oncogene-negative (that is, had no detectable oncogenes present) may actually harbor -promoting extra copies of the AKT2 or TFDP2.

Explore further: Shifting protein networks in breast cancer may alter gene function

More information: Heiko Horn et al. NetSig: network-based discovery from cancer genomes, Nature Methods (2017). DOI: 10.1038/nmeth.4514

Taibo Li et al. A scored human protein–protein interaction network to catalyze genomic interpretation, Nature Methods (2016). DOI: 10.1038/nmeth.4083

Related Stories

Shifting protein networks in breast cancer may alter gene function

November 30, 2017
A given gene may perform a different function in breast cancer cells than in healthy cells due to changes in networks of interacting proteins, according to a new study published in PLOS Computational Biology.

Largest resource of human protein-protein interactions can help interpret genomic data

November 28, 2016
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression. ...

Mutant gene network in colon cancer identified

November 10, 2017
The principles of the gene network for colon tumorigenesis have been identified by a KAIST research team. The principles will be used to find the molecular target for effective anti-cancer drugs in the future. Further, this ...

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...

'Big Data' used to identify new cancer driver genes

October 20, 2015
In a collaborative study led by Sanford Burnham Prebys Medical Discovery Institute (SBP), researchers have combined two publicly available 'omics' databases to create a new catalogue of 'cancer drivers'. Cancer drivers are ...

Recommended for you

Metastatic lymph nodes can be the source of distant metastases in mouse models of cancer

March 22, 2018
A study by Massachusetts General Hospital (MGH) investigators finds that, in mouse models, cancer cells from metastatic lymph nodes can escape into the circulation by invading nodal blood vessels, leading to the development ...

Researchers examine role of fluid flow in ovarian cancer progression

March 22, 2018
New research from Virginia Tech is moving physicians closer to pinpointing a predictor of ovarian cancer, which could lead to earlier diagnosis of what is know as the "silent killer."

Could a pap test spot more than just cervical cancer?

March 22, 2018
Pap tests have helped drive down rates of cervical cancer, and a new study suggests they also could be used to detect other gynecologic cancers early.

Probing RNA epigenetics and chromatin structures to predict drug resistance in leukemia

March 22, 2018
Drug resistance is a major obstacle to effective treatment for patients with cancer and leukemia. Epigenetic modifying drugs have been proven effective for some patients with hematologic malignancies, such as myelodysplastic ...

Researchers identify compound to prevent breast cancer cells from activating in brain

March 22, 2018
Researchers at Houston Methodist used computer modeling to find an existing investigational drug compound for leukemia patients to treat triple negative breast cancer once it spreads to the brain.

Gene-based test for urine detects, monitors bladder cancer

March 22, 2018
Researchers at The Johns Hopkins Kimmel Cancer Center have developed a test for urine, gathered during a routine procedure, to detect DNA mutations identified with urothelial cancers.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.